首页> 外文期刊>Computers & mathematics with applications >Fast high-dimensional node generation with variable density
【24h】

Fast high-dimensional node generation with variable density

机译:密度可变的快速高维节点生成

获取原文
获取原文并翻译 | 示例

摘要

We present an algorithm for producing discrete distributions with a prescribed nearest neighbor distance function. Our approach is a combination of quasi-Monte Carlo (Q-MC) methods and weighted Riesz energy minimization: the initial distribution is a stratified Q-MC sequence with some modifications; a suitable energy functional on the configuration space is then minimized to ensure local regularity. The resulting node sets are good candidates for building meshless solvers and interpolants, as well as for other purposes where a point cloud with a controlled separation-covering ratio is required. Applications of a three-dimensional implementation of the algorithm, in particular to atmospheric modeling, are also given. (C) 2018 Elsevier Ltd. All rights reserved.
机译:我们提出了一种用于产生具有指定最近邻距离函数的离散分布的算法。我们的方法是准蒙特卡罗(Q-MC)方法和加权Riesz能量最小化的组合:初始分布是分层的Q-MC序列,并进行了一些修改。然后最小化配置空间上的合适能量功能以确保局部规律性。生成的节点集是构建无网格求解器和内插器的良好候选者,以及在需要具有受控分离覆盖率的点云的其他目的中也是不错的选择。还给出了该算法的三维实现的应用,特别是在大气建模中的应用。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号