首页> 外文期刊>Computers & mathematics with applications >A Least Squares Coupling Method with Finite Elements and Boundary Elements for Transmission Problems
【24h】

A Least Squares Coupling Method with Finite Elements and Boundary Elements for Transmission Problems

机译:传递问题的有限元和边界元最小二乘耦合方法

获取原文
获取原文并翻译 | 示例

摘要

We analyze a least squares formulation for the numerical solution of second-order linear transmission problems in two and three dimensions, which allow jumps on the interface. In a bounded domain the second-order partial differential equation is rewritten as a first-order system; the part of the transmission problem which corresponds to the unbounded exterior domain is reformulated by means of boundary integral equations on the interface. The least squares functional is given in terms of Sobolev norms of order -1 and of order 1/2. These norms are computed by approximating the corresponding inner products using multilevel preconditioners for a second-order elliptic problem in a bounded domain Ω and for the weakly singular integral operator of the single layer potential on its boundary αΩ. As preconditioners we use both multigrid and BPX algorithms, and the preconditioned system has bounded or mildly growing condition number Numerical experiments confirm our theoretical results.
机译:我们分析了最小二乘公式,以便求解二维和二维的二阶线性传递问题的数值解,从而可以在界面上跳跃。在有界域中,二阶偏微分方程被重写为一阶系统。传输问题中与无界外部域相对应的部分通过界面上的边界积分方程来重新表述。最小二乘泛函以-1级和1/2级的Sobolev范数给出。这些范数是通过对有界域Ω中的二阶椭圆问题和边界αΩ上单层电势的弱奇异积分算子使用多级预处理器逼近相应的内积来计算的。作为预处理器,我们同时使用了多重网格和BPX算法,并且预处理系统的条件数有界或温和增长。数值实验证实了我们的理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号