首页> 外文期刊>Computers & mathematics with applications >Combining the Radial Basis Function Euleriaft and Lagrangian Schemes with Geostatistics for Modeling of Radionuclide Migration Through the Geosphere
【24h】

Combining the Radial Basis Function Euleriaft and Lagrangian Schemes with Geostatistics for Modeling of Radionuclide Migration Through the Geosphere

机译:将径向基函数Euleriaft和Lagrangian方案与地统计学相结合,以模拟放射性核素在地球圈中的迁移

获取原文
获取原文并翻译 | 示例

摘要

To assess the long-term safety of a radioactive waste disposal system, mathematical models are used to describe groundwater flow, chemistry, and potential radionuclide migration through geological formations, A number of processes need to be considered, when predicting the movement of radionuclides through the geosphere. The most important input data are obtained from field measurements, which are not available for all regions of interest. For example, the hydraulic conductivity as an input parameter varies from place to place. In such cases, geostatistical science offers a variety of spatial estimation procedures. Methods for solving the solute transport equation can also be classified as Eulerian, Lagrangian and mixed. The numerical solution of partial differential equations (PDE) has usually been obtained by finite-difference methods (FDM), finite-element methods (FEM), or finite-volume methods (FVM), Kansa introduced the concept of solving partial differential equations using radial basis functions (RBF) for hyperbolic, parabolic, and elliptic PDEs, The aim of this study was to present a relatively new approach to the modeling of radionuclide migration through the geosphere using radial basis function methods in Eulerian and Lagrangian coordinates, In this study, we determine the average and standard deviation of radionuclide concentration with regard to variable hydraulic conductivity, which was modelled by a geostatistical approach. Radionuclide concentrations will also be calculated in heterogeneous and partly heterogeneous 2D porous media.
机译:为了评估放射性废物处置系统的长期安全性,使用数学模型描述了地下水的流量,化学性质以及潜在的放射性核素通过地质构造的迁移。在预测放射性核素通过放射性同位素的运动时,需要考虑许多过程。地球圈。最重要的输入数据是从现场测量获得的,并非对所有感兴趣的区域都可用。例如,作为输入参数的水力传导率随位置而变化。在这种情况下,地统计学科学提供了多种空间估算程序。求解溶质运移方程的方法也可以分为欧拉,拉格朗日和混合。偏微分方程(PDE)的数值解法通常是通过有限差分法(FDM),有限元方法(FEM)或有限体积法(FVM)获得的,Kansa介绍了使用以下方法求解偏微分方程的概念双曲,抛物线和椭圆形偏微分方程的径向基函数(RBF),本研究的目的是使用欧拉坐标和拉格朗日坐标中的径向基函数方法,提出一种相对较新的方法来建模放射性核素在地球上的迁移。 ,我们确定了关于可变水力传导率的放射性核素浓度的平均值和标准偏差,这是通过地统计学方法建模的。放射性核素浓度还将在非均质和部分非均质的二维多孔介质中计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号