首页> 外文期刊>Computers & mathematics with applications >A strategy for detecting extreme eigenvalues bounding gaps in the discrete spectrum of self-adjoint operators
【24h】

A strategy for detecting extreme eigenvalues bounding gaps in the discrete spectrum of self-adjoint operators

机译:一种用于检测自伴算子离散谱中极限间隙的极限特征值的策略

获取原文
获取原文并翻译 | 示例

摘要

For a self-adjoint linear operator with a discrete spectrum or a Hermitian matrix, the "extreme" eigenvalues define the boundaries of clusters in the spectrum of real eigenvalues. The outer extreme ones are the largest and the smallest eigenvalues. If there are extended intervals in the spectrum in which no eigenvalues are present, the eigenvalues bounding these gaps are the inner extreme eigenvalues. We will describe a procedure for detecting the extreme eigenvalues that relies on the relationship between the acceleration rate of polynomial acceleration iteration and the norm of the matrix via the spectral theorem, applicable to normal matrices. The strategy makes use of the fast growth rate of Chebyshev polynomials to distinguish ranges in the spectrum of the matrix which are devoid of eigenvalues. The method is numerically stable with regard to the dimension of the matrix problem and is thus capable of handling matrices of large dimension. The overall computational cost is quadratic in the size of a dense matrix; linear in the size of a sparse matrix. We verify computationally that the algorithm is accurate and efficient, even on large matrices.
机译:对于具有离散频谱或Hermitian矩阵的自伴线性算子,“极限”特征值定义了实特征值频谱中的簇的边界。外部极限值是最大和最小的特征值。如果频谱中存在扩展的间隔,其中不存在任何特征值,则限制这些间隙的特征值即为内部极限特征值。我们将描述一种适用于正常矩阵的,用于检测极端特征值的过程,该过程依赖于多项式加速度迭代的加速度与矩阵范数之间的关系。该策略利用切比雪夫(Chebyshev)多项式的快速增长来区分矩阵谱中没有特征值的范围。该方法关于矩阵问题的维数在数值上是稳定的,因此能够处理大维矩阵。在密集矩阵的大小上,总体计算成本是平方的;稀疏矩阵的大小是线性的。我们通过计算验证了该算法即使在大型矩阵上也准确有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号