首页> 外文期刊>Computers & mathematics with applications >On the numerical solutions of second order macroscopic models of pedestrian flows
【24h】

On the numerical solutions of second order macroscopic models of pedestrian flows

机译:关于人流二阶宏观模型的数值解

获取原文
获取原文并翻译 | 示例

摘要

The main target of this paper is focused on the numerical simulation of macroscopic models - two-dimensional hyperbolic conservation law - of pedestrian flows. Therefore, finite volume methods can be used to discretize the equations. Actually, the algorithms that have been used are particularly suited for solving hyperbolic problems. Moreover, simulations using first order accurate numerical solvers and first Godunov type schemes [S.K. Godunov, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mathematik Sbornik 47 (1959) 271-290] have been developed. This article is motivated by recent research activity focused on the problem of modelling systems of the living matter.
机译:本文的主要目标集中在宏观模型(二维双曲守恒律)的数值模拟上。因此,可以使用有限体积方法来离散化方程。实际上,已使用的算法特别适合解决双曲线问题。此外,使用一阶精确数值解算器和第一Godunov型方案进行的模拟[S.K. Godunov,一种用于流体动力学方程的不连续解的数值计算的有限差分方法,Mathematik Sbornik 47(1959)271-290]已经开发出来。本文受近期针对生物物质建模系统问题的研究活动的启发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号