首页> 外文期刊>Computers & mathematics with applications >An enhanced differential evolution algorithm for daily optimal hydro generation scheduling
【24h】

An enhanced differential evolution algorithm for daily optimal hydro generation scheduling

机译:每日发电最优调度的改进差分进化算法

获取原文
获取原文并翻译 | 示例

摘要

The daily optimal hydro generation scheduling problem (DOHGSB) is a complicated nonlinear dynamic constrained optimization problem, which plays an important role in the economic operation of electric power systems. This paper proposes a new enhanced differential evolution algorithm to solve DOHGSB. In the proposed method, chaos theory was applied to obtain self-adaptive parameter settings in differential evolution (DE). In order to handle constraints effectively, three simple feasibility-based selection comparison techniques embedded into DE are devised to guide the process toward the feasible region of the search space. The feasibility of the proposed method is demonstrated for the daily generation scheduling of a hydro system with four interconnected cascade hydro plants, and the test results are compared with those obtained by the conjugate gradient and two-phase neural network method in terms of solution quality. The simulation results show that the proposed method is able to obtain higher quality solutions.
机译:日最优水力发电调度问题(DOHGSB)是一个复杂的非线性动态约束优化问题,在电力系统的经济运行中起着重要的作用。提出了一种新的改进的差分进化算法来求解DOHGSB。在该方法中,应用混沌理论获得了差分演化(DE)中的自适应参数设置。为了有效地处理约束,设计了三种嵌入到DE中的简单的基于可行性的选择比较技术,以将过程引导到搜索空间的可行区域。证明了该方法在具有四个相互连接的梯级水电站的水力发电系统的日发电调度中的可行性,并将测试结果与通过共轭梯度法和两相神经网络法获得的结果进行了溶液质量的比较。仿真结果表明,该方法能够获得较高质量的解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号