首页> 外文期刊>Computers & mathematics with applications >A discontinuous finite difference streamline diffusion method for time-dependent hyperbolic problems
【24h】

A discontinuous finite difference streamline diffusion method for time-dependent hyperbolic problems

机译:时变双曲问题的不连续有限差分流线扩散方法

获取原文
获取原文并翻译 | 示例

摘要

In this article, a new finite element method, discontinuous finite difference streamline diffusion method (DFDSD), is constructed and studied for first-order linear hyperbolic problems. This method combines the benefit of the discontinuous Galerkin method and the streamline diffusion finite element method. Two fully discrete DFDSD schemes (Euler DFDSD and Crank-Nicolson (CN) DFDSD) are constructed by making use of the difference discrete method for time variables and the discontinuous streamline diffusion method for space variables. The stability and optimal L~2 norm error estimates are established for the constructed schemes. This method makes contributions to the discontinuous methods. Finally, a numerical example is provided to show the benefit of high efficiency and simple implementation of the schemes.
机译:本文针对一阶线性双曲问题构造并研究了一种新的有限元方法,即不连续有限差分流线扩散法(DFDSD)。该方法结合了不连续Galerkin方法和流线扩散有限元方法的优势。利用时间变量的差分离散方法和空间变量的不连续流线扩散方法,构造了两种完全离散的DFDSD方案(Euler DFDSD和Crank-Nicolson(CN)DFDSD)。为所构造的方案建立了稳定性和最优的L〜2范数误差估计。该方法为不连续方法做出了贡献。最后,提供了一个数值示例来说明该方案的高效率和简单实现的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号