首页> 外文期刊>Computers & mathematics with applications >Bivariate C~1 cubic spline spaces with homogeneous boundary conditions over FVS triangulation
【24h】

Bivariate C~1 cubic spline spaces with homogeneous boundary conditions over FVS triangulation

机译:FVS三角剖分上具有齐次边界条件的双变量C〜1三次样条空间

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we mainly generalize the results in [H.W. Liu, D. Hong, D.Q. Cao, Bivariate C~1 cubic spline space over a nonuniform type-2 triangulation and its subspaces with boundary conditions, Comput. Math. Appl. 49 (2005), 1853-1865] from the type-2 triangulation to the so-called FVS triangulation (a triangulated quadrangulation). We study the bivariate C' cubic spline spaces S_3~(1,0)(◇) and S_3~(1.1)(◇) with homogeneous boundary conditions over an FVS triangulation ◇. The dimensions are obtained and the locally supported bases are constructed for these spline spaces. Furthermore, we also study the explicit Bezier ordinates of the interpolation basis splines on a representative triangulated quadrilateral. The results of this paper can be applied in many fields such as the finite element method for partial differential equation, computer aided geometric design, numerical approximation, and so on.
机译:在本文中,我们主要将结果概括为[H.W.刘大康曹,非均匀2型三角剖分上的双变量C〜1三次样条空间及其带边界条件的子空间,计算。数学。应用49(2005),1853-1865]从类型2三角剖分到所谓的FVS三角剖分(三角剖分)。我们研究了在FVS三角剖分◇上具有均匀边界条件的二元C'三次样条空间S_3〜(1,0)(◇)和S_3〜(1.1)(◇)。获得尺寸,并为这些样条空间构建局部支撑的基础。此外,我们还研究了具有代表性的三角四边形上的插值基础样条的显式Bezier坐标。本文的结果可应用于许多领域,例如偏微分方程的有限元方法,计算机辅助几何设计,数值逼近等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号