首页> 外文期刊>Computers & mathematics with applications >Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks
【24h】

Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks

机译:用于模糊神经网络训练的实编码混沌量子启发遗传算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel approach to adjusting the weightings of fuzzy neural networks using a Real-coded Chaotic Quantum-inspired genetic Algorithm (RCQGA) is proposed. Fuzzy neural networks are traditionally trained by using gradient-based methods, which may fall into local minimum during the learning process. To overcome the problems encountered by the conventional learning methods, RCQGA algorithms are adopted because of their capabilities of directed random search for global optimization. It is well known, however, that the searching speed of the conventional quantum genetic algorithms (QGA) is not satisfactory. In this paper, a real-coded chaotic quantum-inspired genetic algorithm (RCQGA) is proposed based on the chaotic and coherent characters of Q-bits. In this algorithm, real chromosomes are inversely mapped to Q-bits in the solution space. Q-bits probability-guided real cross and chaos mutation are applied to the evolution and searching of real chromosomes. Chromosomes consisting of the weightings of the fuzzy neural network are coded as an adjustable vector with real number components that are searched by the RCQGA Simulation results have shown that faster convergence of the evolution process in searching for an optimal fuzzy neural network can be achieved. Examples of nonlinear functions approximated by using the fuzzy neural network via the RCQGA are demonstrated to illustrate the effectiveness of the proposed method.
机译:本文提出了一种使用实数编码混沌量子启发遗传算法(RCQGA)调整模糊神经网络权重的新方法。传统上,通过使用基于梯度的方法来训练模糊神经网络,在学习过程中模糊神经网络可能会陷入局部最小值。为了克服常规学习方法所遇到的问题,采用RCQGA算法是因为它们具有针对全局优化的定向随机搜索功能。然而,众所周知,常规量子遗传算法(QGA)的搜索速度不能令人满意。本文基于Q位的混沌和相干特征,提出了一种实数编码的混沌量子启发遗传算法(RCQGA)。在该算法中,真实染色体被反映射到解空间中的Q位。 Q位概率指导的真实交叉和混沌突变被应用于真实染色体的进化和搜索。由RCQGA搜索的,由模糊神经网络的权重组成的染色体编码为具有实数分量的可调整向量。仿真结果表明,在寻找最佳模糊神经网络时,可以更快地收敛进化过程。通过RCQGA,使用模糊神经网络对非线性函数进行逼近,通过实例说明了该方法的有效性。

著录项

  • 来源
    《Computers & mathematics with applications》 |2009年第12期|2009-2015|共7页
  • 作者单位

    School of Mechanical Engineering, Xi'an Jiaotong University, 710049, Xi'an, China School of Mechanical Engineering, Xi'an University of Science and Technology, 710054, Xi'an, China;

    School of Mechanical Engineering, Xi'an Jiaotong University, 710049, Xi'an, China;

    School of Mechanical Engineering, Xi'an Jiaotong University, 710049, Xi'an, China The State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, 710049, Xi'an, China;

    School of Mechanical Engineering, Xi'an Jiaotong University, 710049, Xi'an, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    quantum-inspired genetic algorithm; fuzzy neural; networks chaotic;

    机译:量子启发遗传算法;模糊神经网络混乱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号