首页> 外文期刊>Computers & mathematics with applications >Co-evolutionary particle swarm optimization to solve constrained optimization problems
【24h】

Co-evolutionary particle swarm optimization to solve constrained optimization problems

机译:协同进化粒子群算法解决约束优化问题

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a co-evolutionary particle swarm optimization (CPSO) algorithm to solve global nonlinear optimization problems. A new co-evolutionary PSO (CPSO) is constructed. In the algorithm, a deterministic selection strategy is proposed to ensure the diversity of population. Meanwhile, based on the theory of extrapolation, the induction of evolving direction is enhanced by adding a co-evolutionary strategy, in which the particles make full use of the information each other by using gene-adjusting and adaptive focus-varied tuning operator. Infeasible degree selection mechanism is used to handle the constraints. A new selection criterion is adopted as tournament rules to select individuals. Also, the infeasible solution is properly accepted as the feasible solution based on a defined threshold of the infeasible degree. This diversity mechanism is helpful to guide the search direction towards the feasible region. Our approach was tested on six problems commonly used in the literature. The results obtained are repeatedly closer to the true optimum solution than the other techniques.
机译:本文提出了一种共进化粒子群优化算法(CPSO)来解决全局非线性优化问题。构造了一个新的共同进化PSO(CPSO)。在该算法中,提出了确定性选择策略以确保种群的多样性。同时,根据外推理论,通过添加共同进化策略来增强进化方向的诱导,在该策略中,粒子通过使用基因调节和自适应聚焦变量调整算子来充分利用信息。不可行的程度选择机制用于处理约束。采用新的选择标准作为比赛规则来选择个人。同样,基于定义的不可行程度阈值,将不可行解决方案正确接受为可行解决方案。这种多样性机制有助于将搜索方向引导到可行区域。我们的方法已针对文献中常用的六个问题进行了测试。与其他技术相比,获得的结果反复更接近真正的最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号