首页> 外文期刊>Computers & mathematics with applications >Color Image Segmentation Using Adaptive Mean Shift And Statistical Model-based Methods
【24h】

Color Image Segmentation Using Adaptive Mean Shift And Statistical Model-based Methods

机译:自适应均值漂移和基于统计模型的彩色图像分割

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an unsupervised segmentation algorithm for color images based on Gaussian mixture models (GMMs). The number of mixture components is determined automatically by adaptive mean shift, in which local clusters are estimated by repeatedly searching for higher density points in feature vector space. For the estimation of parameters of GMMs, the mean field annealing expectation-maximization (EM) is employed. The mean field annealing EM provides a global optimal solution to overcome the local maxima problem in a mixture model. By combining the adaptive mean shift and the mean field annealing EM, natural color images are segmented automatically without over-segmentation or isolated regions. The experiments show that the proposed algorithm can produce satisfactory segmentation without any a priori information.
机译:在本文中,我们提出了一种基于高斯混合模型(GMM)的彩色图像无监督分割算法。混合分量的数量由自适应均值漂移自动确定,其中,通过在特征向量空间中重复搜索较高密度的点来估计局部聚类。为了估计GMM的参数,采用了平均场退火期望最大化(EM)。平均场退火EM为克服混合模型中的局部最大值问题提供了全局最优解。通过将自适应均值漂移和均值场退火EM相结合,可以自动分割自然彩色图像,而不会出现过度分割或孤立区域的情况。实验表明,该算法可以在没有先验信息的情况下产生令人满意的分割效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号