首页> 外文期刊>Computers & mathematics with applications >Application of the Galerkin and Least-Squares Finite Element Methods in the solution of 3D Poisson and Helmholtz equations
【24h】

Application of the Galerkin and Least-Squares Finite Element Methods in the solution of 3D Poisson and Helmholtz equations

机译:Galerkin和最小二乘有限元方法在3D泊松和亥姆霍兹方程求解中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the numerical solution, by the Galerkin and Least Squares Finite Element Methods, of the three-dimensional Poisson and Helmholtz equations, representing heat diffusion in solids. For the two applications proposed, the analytical solutions found in the literature review were used to compare with the numerical solutions. The analysis of results was made from the L~2 norm (average error throughout the domain) and L_∞ norm (maximum error in the entire domain). The results of the two applications (Poisson and Helmholtz equations) are presented and discussed for testing of the efficiency of the methods.
机译:本文通过Galerkin和最小二乘有限元方法,给出了表示固体中热扩散的三维Poisson和Helmholtz方程的数值解。对于提出的两个应用,使用文献综述中找到的解析解与数值解进行比较。根据L〜2范数(整个域的平均误差)和L_∞范数(整个域的最大误差)对结果进行分析。给出并讨论了两个应用程序(泊松方程和亥姆霍兹方程)的结果,以测试方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号