首页> 外文期刊>Computers & mathematics with applications >A finite element penalty method for the linearized viscoelastic Oldroyd fluid motion equations
【24h】

A finite element penalty method for the linearized viscoelastic Oldroyd fluid motion equations

机译:线性粘弹性Oldroyd流体运动方程的有限元罚分法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a fully discrete finite element penalty method is considered for the twodimensional linearized viscoelastic fluid motion equations, arising from the Oldroyd model for the non-Newton fluid flows. With the finite element method for the spatial discretization and the backward Euler scheme for the temporal discretization, the velocity and pressure are decoupled in this method, which leads to a large reduction of the computational scale. Under some realistic assumptions, the unconditional stability of the fully discrete scheme is proved. Moreover, the optimal error estimates are obtained, which are better than the existing results. Finally, some numerical results are given to verify the theoretical analysis. The difference between the motion of the Newton and non-Newton fluid is also observed.
机译:本文针对非牛顿流体流动的Oldroyd模型,针对二维线性化粘弹性流体运动方程,考虑了一种完全离散的有限元罚分方法。通过用于空间离散化的有限元方法和用于时间离散化的后向Euler方案,该方法将速度和压力解耦,从而导致计算量大大减少。在一些现实的假设下,证明了完全离散方案的无条件稳定性。此外,获得了最佳误差估计,其优于现有结果。最后,给出一些数值结果以验证理论分析。还观察到牛顿流体和非牛顿流体的运动之间的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号