首页> 外文期刊>Computers & mathematics with applications >The tight orthogonal homotopic bases of closed oriented triangulated surfaces and their computing
【24h】

The tight orthogonal homotopic bases of closed oriented triangulated surfaces and their computing

机译:闭合定向三角面的紧正交同位基及其计算

获取原文
获取原文并翻译 | 示例

摘要

In this paper, for a closed oriented triangulated surface with genus g, a method with O(g~3n log n) running time of constructing tight orthogonal homotopic bases is presented, where a tight orthogonal homotopic basis is a homotopic basis with the properties: 1. the elements of this basis are cycles, 2. any two adjacent cycles of this basis have exactly one common point, 3. any two nonadjacent cycles of this basis have no common point, and 4. any cycle of this basis is one of the shortest cycles of its homotopic group. The major difference between orthogonal homotopic bases and the well-known canonical homotopic bases is that all the cycles of a canonical homotopic basis have a common point and there is no other common point between any two cycles of the canonical homotopic basis while any two adjacent cycles of an orthogonal homotopic basis have exactly one common point and there is no common point among any three cycles of this basis.
机译:本文针对g族的闭合定向三角曲面,提出了一种运行时间为O(g〜3n log n)的构造紧密正交同位基的方法,其中紧密正交同位基是具有以下性质的同位基: 1.此基础的元素是循环,2.此基础的任何两个相邻循环都具有一个公共点,3.此基础的任何两个不相邻的循环都没有公共点,并且4.此基础的任何循环是以下之一其同位基团的最短周期。正交同位碱基与众所周知的规范同位碱基之间的主要区别是,规范同位碱基的所有循环都具有一个公共点,而规范同位点的任意两个循环之间没有其他公共点,而任何两个相邻的循环正交同位基的任意一个正好具有一个公共点,并且在该基的任何三个周期之间没有公共点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号