首页> 外文期刊>Computers & mathematics with applications >The periodic solutions for general periodic impulsive population systems of functional differential equations and its applications
【24h】

The periodic solutions for general periodic impulsive population systems of functional differential equations and its applications

机译:泛函微分方程周期脉冲群系统的周期解及其应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the general periodic impulsive population systems of functional differential equations are investigated. By using the method of Poincare map and Horn's fixed point theorem, we prove that the ultimate boundedness of all solutions implies the existence of periodic solutions. As applications of this result, the existence of positive periodic solutions for the general periodic impulsive Kolmogorov-type population dynamical systems are discussed. We further prove that as long as the system is permanent, there must exist at least one positive periodic solution. In addition, the permanence and existence of positive periodic solutions are discussed for the periodic impulsive single-species logistic models and the periodic impulsive n-species Lotka-Volterra competitive models with delays.
机译:本文研究了泛函微分方程的一般周期脉冲群系统。通过使用庞加莱图和霍恩不动点定理的方法,我们证明了所有解的最终有界性意味着周期解的存在。作为该结果的应用,讨论了一般周期脉冲Kolmogorov型种群动力学系统的正周期解的存在。我们进一步证明,只要系统是永久性的,就必须至少存在一个正周期解。此外,还讨论了具有时滞的周期脉冲单种群逻辑模型和周期脉冲n种群Lotka-Volterra竞争模型的正周期解的持久性和存在性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号