首页> 外文期刊>Computers & mathematics with applications >Generalized fractional calculus with applications to the calculus of variations
【24h】

Generalized fractional calculus with applications to the calculus of variations

机译:广义分数阶微积分及其在变异微积分中的应用

获取原文
获取原文并翻译 | 示例

摘要

We study operators that are generalizations of the classical Riemann-Liouville fractional integral, and of the Riemann-Liouville and Caputo fractional derivatives. A useful formula relating the generalized fractional derivatives is proved, as well as three relations of fractional integration by parts that change the parameter set of the given operator into its dual. Such results are explored in the context of dynamic optimization, by considering problems of the calculus of variations with general fractional operators. Necessary optimality conditions of Euler-Lagrange type and natural boundary conditions for unconstrained and constrained problems are investigated. Interesting results are obtained even in the particular case when the generalized operators are reduced to be the standard fractional derivatives in the sense of Riemann-Liouville or Caputo. As an application we provide a class of variational problems with an arbitrary kernel that give answer to the important coherence embedding problem. Illustrative optimization problems are considered.
机译:我们研究算子,这些算子是经典Riemann-Liouville分式积分以及Riemann-Liouville和Caputo分数导数的推广。证明了一个与广义分数阶导数有关的有用公式,以及由将给定算子的参数集更改为其对偶的部分的分数积分的三种关系。通过考虑通用分数算子的微积分问题,可以在动态优化的背景下探索此类结果。研究了无约束和约束问题的必要的Euler-Lagrange类型最优条件和自然边界条件。即使在特殊情况下,将广义算子简化为Riemann-Liouville或Caputo的标准分数导数,也可以获得有趣的结果。作为一个应用程序,我们提供了带有任意核的一类变分问题,这些变分问题为重要的相干嵌入问题提供了答案。考虑说明性的优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号