首页> 外文期刊>Computers & mathematics with applications >The highly accurate block-grid method in solving Laplace's equation for nonanalytic boundary condition with corner singularity
【24h】

The highly accurate block-grid method in solving Laplace's equation for nonanalytic boundary condition with corner singularity

机译:求解具有角奇点的非解析边界条件的拉普拉斯方程的高精度块网格方法

获取原文
获取原文并翻译 | 示例

摘要

The highly accurate block-grid method for solving Laplace's boundary value problems on polygons is developed for nonanalytic boundary conditions of the first kind. The quadrature approximation of the integral representations of the exact solution around each reentrant corner("singular" part) are combined with the 9-point finite difference equations on the "nonsingular" part. In the integral representations, and in the construction of the sixth order gluing operator, the boundary conditions are taken into account with the help of integrals of Poisson type for a half-plane which are computed with ε accuracy. It is proved that the uniform error of the approximate solution is of order O(h~δ+ε), where h is the mesh step. This estimation is true for the coefficients of singular terms also. The errors of p-order derivatives (p = 0,1,...) in the "singular" parts are O((h~δ + ε)r_j~(1/αj-p)), r_j is the distance from the current point to the vertex in question and α_jπ is the value of the interior angle of the jth vertex. Finally, we give the numerical justifications of the obtained theoretical results.
机译:针对第一种非解析边界条件,开发了一种用于求解多边形上拉普拉斯边值问题的高精度块网格方法。围绕每个可重入角(“奇异”部分)的精确解的积分表示的正交逼近与“非奇异”部分上的9点有限差分方程组合在一起。在积分表示中,以及在六阶胶合算子的构造中,借助于泊松型半平面的积分(考虑了ε精度)考虑了边界条件。证明了近似解的均匀误差为O(h〜δ+ε)阶,其中h是网格步长。这种估计对于奇异项的系数也是正确的。 “奇异”部分中p阶导数(p = 0,1,...)的误差为O((h〜δ+ε)r_j〜(1 /αj-p)),r_j是到当前点到该顶点,α_jπ是第j个顶点的内角值。最后,我们给出了获得的理论结果的数值论证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号