首页> 外文期刊>Computers, Materials & Continua >A Novel DDoS Attack Detection Method Using Optimized Generalized Multiple Kernel Learning
【24h】

A Novel DDoS Attack Detection Method Using Optimized Generalized Multiple Kernel Learning

机译:优化的广义多核学习的新型DDoS攻击检测方法

获取原文
获取原文并翻译 | 示例

摘要

Distributed Denial of Service (DDoS) attack has become one of the most destructive network attacks which can pose a mortal threat to Internet security. Existing detection methods cannot effectively detect early attacks. In this paper, we propose a detection method of DDoS attacks based on generalized multiple kernel learning (GMKL) combining with the constructed parameter R. The super-fusion feature value (SFV) and comprehensive degree of feature (CDF) are defined to describe the characteristic of attack flow and normal flow. A method for calculating R based on SFV and CDF is proposed to select the combination of kernel function and regularization paradigm. A DDoS attack detection classifier is generated by using the trained GMKL model with R parameter. The experimental results show that kernel function and regularization parameter selection method based on R parameter reduce the randomness of parameter selection and the error of model detection, and the proposed method can effectively detect DDoS attacks in complex environments with higher detection rate and lower error rate.
机译:分布式拒绝服务(DDoS)攻击已成为最具破坏性的网络攻击之一,它可能对Internet安全构成致命威胁。现有的检测方法不能有效地检测早期攻击。本文提出了一种基于广义多核学习(GMKL)结合构造参数R的DDoS攻击检测方法。定义了超融合特征值(SFV)和综合特征度(CDF)来描述DDoS攻击。攻击流和正常流的特征。为了选择核函数和正则化范式的组合,提出了一种基于SFV和CDF的R计算方法。通过使用训练后的带有R参数的GMKL模型来生成DDoS攻击检测分类器。实验结果表明,基于R参数的核函数和正则化参数选择方法减少了参数选择的随机性和模型检测的误差,可以有效地检测复杂度较高的DDoS攻击,错误率较低。

著录项

  • 来源
    《Computers, Materials & Continua》 |2020年第3期|1423-1443|共21页
  • 作者

  • 作者单位

    Key Laboratory of Internet Information Retrieval of Hainan Province Hainan University Haikou China College of Information Science & Technology Hainan University Haikou China;

    College of Information Science & Technology Hainan University Haikou China;

    Department of Computer Science University of Central Arkansas Conway AR 72035 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    DDoS attack detection; GMKL; parameter optimization;

    机译:DDoS攻击检测;GMKL;参数优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号