首页> 外文期刊>Journal of supercomputing >The DDoS attacks detection through machine learning and statistical methods in SDN
【24h】

The DDoS attacks detection through machine learning and statistical methods in SDN

机译:DDOS通过SDN中的机器学习和统计方法攻击检测

获取原文
获取原文并翻译 | 示例

摘要

The distributed denial-of-service (DDoS) attack is a security challenge for the software-defined network (SDN). The different limitations of the existing DDoS detection methods include the dependency on the network topology, not being able to detect all DDoS attacks, applying outdated and invalid datasets and the need for powerful and costly hardware infrastructure. Applying static thresholds and their dependency on old data in previous periods reduces their flexibility for new attacks and increases the attack detection time. A new method detects DDoS attacks in SDN. This method consists of the three collector, entropy-based and classification sections. The experimental results obtained by applying the UNB-ISCX, CTU-13 and ISOT datasets indicate that this method outperforms its counterparts in terms of accuracy in detecting DDoS attacks in SDN.
机译:分布式拒绝服务(DDOS)攻击是软件定义网络(SDN)的安全挑战。现有DDOS检测方法的不同局限性包括对网络拓扑的依赖性,无法检测到所有DDOS攻击,应用过时和无效的数据集以及强大且昂贵的硬件基础架构的需求。应用静态阈值及其对先前旧数据的依赖性降低了对新攻击的灵活性,并提高了攻击检测时间。一种新方法检测到SDN中的DDOS攻击。该方法包括三个收集器,基于熵和分类部分。通过应用UNB-ISCX,CTU-13和ISOT数据集获得的实验结果表明该方法在检测SDN中的DDOS攻击方面的准确性方面优于其对应物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号