首页> 外文期刊>Computers & Industrial Engineering >Capacity allocation with lot splitting in photolithography area using hybrid genetic algorithm based on self-tuning strategy
【24h】

Capacity allocation with lot splitting in photolithography area using hybrid genetic algorithm based on self-tuning strategy

机译:基于自调整策略的混合遗传算法,用杂交遗传算法在光刻区域中分裂的容量分配

获取原文
获取原文并翻译 | 示例

摘要

In the semiconductor industry with complicated manufacturing processes, a wafer lot passes through hundreds of operations, and the procedure takes a few months to complete. To meet customer deadline, utilizing and allocating machine capacity in a photolithography area efficiently by making suitable lot/order splitting decisions is a critical issue. Therefore, this research initially presents a mixed-integer nonlinear programming model to solve the capacity allocation problem with lot splitting in the photolithography area. Considering various manufacturing restrictions, such as process capability, machine dedication, and reticle constraints, this model can simultaneously determine the optimal lot-splitting and lot-allocation decisions to minimize the loading difference between each machine. Given the complexity of the mathematical model, this research further develops an adaptive hybrid genetic algorithm (HGA) with a local search mechanism and an auto-tuning strategy, namely, fuzzy logic controller, to solve the capacity allocation problem with lot splitting effectively. Finally, numerical experiments are conducted to demonstrate the efficiency of the developed HGA.
机译:在具有复杂制造过程的半导体行业中,晶圆批次通过数百个操作,该程序需要几个月才能完成。为了满足客户截止日期,通过制作合适的批次/订单分割决策,有效地利用和分配了光刻区域的机器容量是一个关键问题。因此,该研究最初介绍了混合整数非线性编程模型,以解决光刻区域中的批次分裂的容量分配问题。考虑到各种制造限制,例如过程能力,机器奉献和掩模版约束,该模型可以同时确定最佳批量分配和批次分配决策,以最小化每台机器之间的负载差异。鉴于数学模型的复杂性,该研究进一步利用本地搜索机制和自动调整策略,即模糊逻辑控制器的自适应混合遗传算法(HGA),以解决批次拆分的容量分配问题。最后,进行了数值实验以证明发育的HGA的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号