首页> 外文期刊>Computers & Industrial Engineering >A genetic algorithm-based approach for solving the resource-sharing and scheduling problem
【24h】

A genetic algorithm-based approach for solving the resource-sharing and scheduling problem

机译:基于遗传算法的资源共享与调度问题解决方法

获取原文
获取原文并翻译 | 示例

摘要

We introduce a heuristic that is based on a unique genetic algorithm (GA) to solve the resource-sharing and scheduling problem (RSSP). This problem was previously formulated as a continuous-time mixed integer linear programming model and was solved optimally using a branch-and-bound (B&B) algorithm. The RSSP considers the use of a set of resources for the production of several products. Producing each product requires a set of operations with precedence relationships among them. Each operation can be performed using alternative modes which define the subset of the resources needed, and an operation may share different resources simultaneously. The problem is to select a single mode for each operation and accordingly to schedule the resources, while minimizing the makespan time. The GA we propose is based on a new encoding schema that adopts the structure of a DNA in nature. In our experiments we compared the effectiveness and runtime of our GA versus a B&B algorithm and two truncated B&B algorithms that we developed on a set of 118 problem instances. The results demonstrate that the GA solved all the problems (10 runs each), and reaches optimality in 75% of the runs, had an average deviation of less than 1% from the optimal makespan, and a runtime that was much less sensitive to the size of the problem instance.
机译:我们介绍一种基于独特遗传算法(GA)的启发式算法,以解决资源共享和调度问题(RSSP)。该问题以前被公式化为连续时间混合整数线性规划模型,并使用分支定界(B&B)算法进行了最优解决。 RSSP考虑使用一组资源来生产几种产品。生产每种产品都需要一系列具有优先级关系的操作。可以使用定义所需资源子集的替代模式执行每个操作,并且一个操作可以同时共享不同的资源。问题在于为每个操作选择单一模式,并相应地调度资源,同时最大程度地缩短制造时间。我们提出的GA是基于一种新的编码方案,该方案采用了自然的DNA结构。在我们的实验中,我们比较了GA和B&B算法以及我们针对118个问题实例开发的两种截断B&B算法的有效性和运行时间。结果表明,GA解决了所有问题(每个运行10个),并在75%的运行中达到了最佳状态,与最佳制造时间的平均偏差小于1%,并且运行时对运行时间的敏感性降低了很多问题实例的大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号