首页> 外文期刊>Computers & Industrial Engineering >Accelerating Benders decomposition approach for robust aggregate production planning of products with a very limited expiration date
【24h】

Accelerating Benders decomposition approach for robust aggregate production planning of products with a very limited expiration date

机译:加速Benders分解方法,以有效的总产品生产计划,有效期非常有限

获取原文
获取原文并翻译 | 示例

摘要

The price of products with a very limited expiration date reduces dramatically after a certain period, say a season. Thus, overproduction or deficiency of such products will end in loss of profit. This study determines aggregate production planning (APP) of products with a very limited expiration date, such as seasonal clothing, New Year gifts, yearbooks and calendars using postponement policy with uncertain conditions. In order to apply the concept of postponement for these products, three types of production activities including direct production, semi-finished production and final assembly are taken into account. Additionally, a robust optimization model is expanded to deal with the inherent uncertainty of the model parameters. Moreover, since the proposed problem is NP-hard, a Benders decomposition algorithm is developed by using two efficient acceleration inequalities to tackle large-scale computational complexity. Finally, a set of real data from a calendar producing company in Tehran called "NIK Calendar" are used to validate the model and show the efficiency as well as convergence of the developed Benders decomposition algorithm. The computational results clearly show efficiency and effectiveness of the devised algorithm.
机译:有效期非常有限的产品的价格在一定时期(例如一个季节)后会急剧下降。因此,此类产品的生产过剩或不足将导致利润损失。这项研究使用不确定条件下的推迟政策来确定具有非常有限的到期日期的产品的总生产计划(APP),例如季节性服装,新年礼物,年鉴和日历。为了对这些产品应用延迟的概念,考虑了三种类型的生产活动,包括直接生产,半成品和最终组装。另外,扩展了鲁棒的优化模型以处理模型参数的固有不确定性。此外,由于所提出的问题是NP难的,因此通过使用两个有效的加速度不等式开发了Benders分解算法来解决大规模的计算复杂性。最后,一组来自德黑兰日历生产公司的真实数据被称为“ NIK Calendar”,以验证该模型并显示出已开发的Benders分解算法的效率和收敛性。计算结果清楚地表明了该算法的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号