首页> 外文期刊>Computers & Industrial Engineering >New mathematical models and a hybrid Grouping Evolution Strategy algorithm for optimal helicopter routing and crew pickup and delivery
【24h】

New mathematical models and a hybrid Grouping Evolution Strategy algorithm for optimal helicopter routing and crew pickup and delivery

机译:新的数学模型和混合分组进化策略算法可实现最佳直升机选路,机组人员接送

获取原文
获取原文并翻译 | 示例

摘要

Most jacket installations located in offshore regions require daily transportation of crew with helicopter, which imposes huge operational costs on oil and gas companies. In order to save on crew exchange costs, the daily flight schedule must be planned in a way that all constraints related to origin-destination itinerary, sortieing, flight length, capacity and crew member's arrival time to the onshore base be met and the finish time of the final sortie be minimized. For this helicopter routing and crew exchange problem, two different mathematical models are developed which differ in the way the nodes and arcs are defined, and accordingly, the way the decision variables are defined. These models were solved to optimality for test problems up to 11 jackets and 28 crew members, and for the real case of South Pars Gas Field, the world's largest gas field, up to 11 jackets and 46 passengers. Considering the future extensions of the South Pars Gas Field and for problems of larger sizes, given the nature of the problem which is a grouping problem, a new algorithm, namely the hybrid Grouping Evolution Strategy (HGES), is proposed which works based on the composition of the flight sorties rather than working with each nodes in isolation. Several heuristics and a local search algorithm are incorporated in the body of GES to enhance its performance. Extensive computational experiments demonstrate that HGES can produce good solutions in an acceptable amount of time which is fit for operational use, as compared with particle swarm optimization (PSO) and pure Grouping Evolution Strategy algorithm. A GUI has also been designed to eliminate the complexity and inefficiency of the current method which is on "by-eye" basis.
机译:大多数位于海上地区的夹克装置都需要每天用直升机运送机组人员,这对石油和天然气公司造成了巨大的运营成本。为了节省机组人员的交换成本,必须按照与出发地行程,分拣,飞行长度,容量和机组人员到达陆上基地的时间有关的所有限制条件来计划每日航班时间表最终出击的数量要最小化。针对此直升机的选路和人员交换问题,开发了两种不同的数学模型,它们在定义节点和弧的方式以及定义决策变量的方式方面有所不同。这些模型针对最高达11个夹克和28名机组人员的测试问题进行了优化求解,而对于全球最大的天然气田South Pars气田的真实案例,则最多可解决11个夹克和46位乘客。考虑到南帕尔斯气田的未来扩展和较大规模的问题,鉴于问题的性质是分组问题,提出了一种新算法,即混合分组演化策略(HGES),该算法基于飞行航班的组成,而不是孤立地处理每个节点。 GES主体中结合了几种启发式方法和局部搜索算法,以增强其性能。大量的计算实验表明,与粒子群优化(PSO)和纯分组演化策略算法相比,HGES可以在可接受的时间内生成良好的解决方案,适合运营使用。还设计了GUI以消除基于“肉眼观察”的当前方法的复杂性和无效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号