首页> 外文期刊>IEEE Transactions on Computers >Round-Off Error and Exceptional Behavior Analysis of Explicit Runge-Kutta Methods
【24h】

Round-Off Error and Exceptional Behavior Analysis of Explicit Runge-Kutta Methods

机译:圆形误差和显式跳动 - 库特拉方法的特殊行为分析

获取原文
获取原文并翻译 | 示例

摘要

Numerical integration schemes are mandatory to understand complex behaviors of dynamical systems described by ordinary differential equations. Implementation of these numerical methods involve floating-point computations and propagation of round-off errors. This paper presents a new fine-grained analysis of round-off errors in explicit Runge-Kutta integration methods, taking into account exceptional behaviors, such as underflow and overflow. Linear stability properties play a central role in the proposed approach. For a large class of Runge-Kutta methods applied on linear problems, a tight bound of the round-off errors is provided. A simple test is defined and ensures the absence of underflow and a tighter round-off error bound. The absence of overflow is guaranteed as linear stability properties imply that (computed) solutions are non-increasing.
机译:数值积分方案是强制性地理解常微分方程描述的动态系统的复杂行为。这些数值方法的实现涉及浮点计算和循环误差的传播。本文提出了一种新的细粒度分析,在显式跳动 - 库特拉集成方法中进行了循环误差,考虑到卓越的行为,例如下溢和溢出。线性稳定性属性在所提出的方法中起着核心作用。对于应用于线性问题的大类跑步 - 库特拉方法,提供了圆形误差的紧密束缚。定义了一个简单的测试,并确保不存在下溢和绑定更紧密的循环错误。没有溢出的情况得到保证为线性稳定性属性意味着(计算的)解决方案是非增加的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号