首页> 外文期刊>IEEE Transactions on Computers >Enabling Energy-Efficient and Reliable Neural Network via Neuron-Level Voltage Scaling
【24h】

Enabling Energy-Efficient and Reliable Neural Network via Neuron-Level Voltage Scaling

机译:通过神经元电压缩放实现节能可靠的神经网络

获取原文
获取原文并翻译 | 示例

摘要

With the platforms of running deep neural networks (DNNs) move from large-scale data centers to handheld devices, power emerge as one of the most significant obstacles. Voltage scaling is a promising technique that enables power saving. Nevertheless, it raises reliability and performance concerns that may undesirably deteriorate NNs accuracy and performance. Consequently, an energy-efficient and reliable scheme is required for NNs to balance the above three aspects with satisfied user experience. To this end, we propose a neuron-level voltage scaling framework called NN-APP to model the impact of supply voltages on NNs from output accuracy (A), power (P), and performance (P) perspectives. We analyze the error propagation characteristics in NNs at both inter- and intra-network layers to precisely model the impact of voltage scaling on the final output accuracy at neuron-level. Furthermore, we combine a voltage clustering method and the multi-objective optimization to identify the optimal voltage islands and apply the same voltage to neurons with similar fault tolerance capability. We perform three case studies to demonstrate the efficacy of the proposed techniques.
机译:通过运行深度神经网络(DNN)的平台从大型数据中心移动到手持设备,电力出现为最重要的障碍之一。电压缩放是一种希望省电的有希望的技术。尽管如此,它提高了可靠性和性能问题,这可能不合需要地恶化了NNS精度和性能。因此,NNS需要通过满足用户体验来平衡上述三个方面所需的节能和可靠的方案。为此,我们提出了一个名为NN-App的神经元级电压缩放框架,以模拟来自输出精度(A),Power(P)和性能(P)透视图的NNS上的电源电压的影响。我们分析了两个网络间层中NNS中的误差传播特性,精确地模拟了电压缩放对神经元级最终输出精度的影响。此外,我们将电压聚类方法和多目标优化组合以识别最佳电压岛,并将相同的电压与具有相似容错能力的神经元施加相同的电压。我们执行三种案例研究以证明所提出的技术的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号