首页> 外文期刊>IEEE Transactions on Computers >Maximizing I/O Throughput and Minimizing Performance Variation via Reinforcement Learning Based I/O Merging for SSDs
【24h】

Maximizing I/O Throughput and Minimizing Performance Variation via Reinforcement Learning Based I/O Merging for SSDs

机译:通过基于SSD的I / O合并,通过加固学习最大限度地提高I / O吞吐量并最大限度地减少性能变化

获取原文
获取原文并翻译 | 示例

摘要

Merging technique is widely adopted by I/O schedulers to maximize system I/O throughput. However, I/O merging could increase the latency of individual I/O, thus incurring prolonged I/O latencies and enlarged performance variations. Even with better system throughput, higher worst-case latency experienced by some requests could block the SSD storage system, which violates the QoS (Quality of Service) requirement. In order to improve QoS performance while providing higher I/O throughput, this paper proposes a reinforcement learning based I/O merging approach. Through learning the characteristic of various I/O patterns, the proposed approach makes merging decisions adaptively based on different I/O workloads. Evaluation results show that the proposed scheme is capable of reducing the standard deviation of I/O latency by 19.1 percent on average, worst-case latency by 7.3-60.9 percent at the 99.9th percentile compared with the latest I/O merging scheme, while maximizing system throughput.
机译:合并技术被I / O调度器广泛采用,以最大限度地提高系统I / O吞吐量。但是,I / O合并可以增加单个I / O的延迟,从而导致延长的I / O潜伏和增大性能变化。即使有更好的系统吞吐量,某些请求所经历的更高的最坏情况延迟也可能阻止SSD存储系统,违反QoS(服务质量)要求。为了在提供更高的I / O吞吐量的同时提高QoS性能,提出了一种基于I / O合并方法的加强学习。通过学习各种I / O模式的特征,所提出的方法基于不同的I / O工作负载自适应地进行决策。评价结果表明,该方案能够将I / O潜伏期的标准偏差降低了19.1%,平均值,最差的潜伏期为7.3-60.9%,与最新的I / O合并方案相比,最大化系统吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号