首页> 外文期刊>IEEE Transactions on Computers >GDP: A Greedy Based Dynamic Power Budgeting Method for Multi/Many-Core Systems in Dark Silicon
【24h】

GDP: A Greedy Based Dynamic Power Budgeting Method for Multi/Many-Core Systems in Dark Silicon

机译:GDP:一种基于GDP的贪婪动态功率预算方法,用于深硅的多/多核系统

获取原文
获取原文并翻译 | 示例

摘要

Dark silicon phenomenon is significant in today's multi/many-core systems manufactured using new generation technology. In order to enhance performance of dark silicon systems, power budget constrained dynamic optimizations are performed in various ways including dynamic voltage and frequency scaling (DVFS) and task scheduling. However, power budgets given by existing methods are generally over pessimistic, which greatly limit the capability of dynamic performance optimization methods. In order to resolve this problem, we propose a dynamic power budgeting method, called Greedy based Dynamic Power (GDP). Different from existing methods, which are steady state based and ignore active core distributions, GDP formulates the power budgeting problem as a thermal-constrained combinational power optimization problem. To efficiently solve this problem, we propose two new ideas: first, we transform the original power-optimization problem to an easier solving temperature-optimization problem; second, we employ a more efficient greedy based algorithm that finds a sub-optimal active core distribution which maximizes power budget. The new method can consider current temperature states and transient thermal effects, which were ignored by existing methods. Both theoretical studies and experimental results show that GDP outperforms existing methods by providing a higher and less pessimistic power budget with low computing cost and guaranteed thermal safety.
机译:暗硅现象在当今使用新一代技术制造的多种/多核系统中是显着的。为了提高暗硅系统的性能,以各种方式执行电力预算限制的动态优化,包括动态电压和频率缩放(DVF)和任务调度。然而,现有方法给出的功率预算通常在悲观上,这极大地限制了动态性能优化方法的能力。为了解决这个问题,我们提出了一种动态的电力预算方法,称为贪婪的动态功率(GDP)。与现有的方法不同,这是基于稳态和忽略有源核心分布的,GDP将电力预算问题制定为热受限组合功率优化问题。为了有效解决这个问题,我们提出了两个新的想法:首先,我们将原始电力优化问题转换为更容易解决的温度优化问题;其次,我们采用更有效的基于贪婪的算法,该算法可以找到最大化电力预算的子最优活动核心分布。新方法可以考虑当前温度状态和瞬态热效应,由现有方法忽略。理论研究和实验结果都表明,GDP通过提供较高且较少的悲观电量预算,具有低计算成本和保证热安全性,优于现有的方法。

著录项

  • 来源
    《IEEE Transactions on Computers》 |2019年第4期|526-541|共16页
  • 作者单位

    Univ Elect Sci & Technol China State Key Lab Elect Thin Films & Integrated Devic Chengdu 610054 Sichuan Peoples R China|Univ Elect Sci & Technol China Sch Elect Sci & Engn Chengdu 610054 Sichuan Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Films & Integrated Devic Chengdu 610054 Sichuan Peoples R China|Univ Elect Sci & Technol China Sch Elect Sci & Engn Chengdu 610054 Sichuan Peoples R China;

    Cadence Design Syst Inc Shanghai 201204 Peoples R China;

    Univ Calif Riverside Dept Elect & Comp Engn Riverside CA 92521 USA;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Films & Integrated Devic Chengdu 610054 Sichuan Peoples R China|Univ Elect Sci & Technol China Sch Elect Sci & Engn Chengdu 610054 Sichuan Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Films & Integrated Devic Chengdu 610054 Sichuan Peoples R China|Univ Elect Sci & Technol China Sch Elect Sci & Engn Chengdu 610054 Sichuan Peoples R China;

    Univ Elect Sci & Technol China Sch Automat Engn Chengdu 610054 Sichuan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Power budget; dark silicon; multi/many-core system;

    机译:电力预算;黑暗硅;多/多核系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号