首页> 外文期刊>IEEE Transactions on Computers >Carry-free addition of recoded binary signed-digit numbers
【24h】

Carry-free addition of recoded binary signed-digit numbers

机译:随身携带重新编码的二进制带符号数字

获取原文
获取原文并翻译 | 示例

摘要

Signed-digital number representation systems have been defined for any radix r alpha >r. Such number representation systems possess sufficient redundancy to allow for the annihilation of carry or borrow chains and hence result in fast, propagation-free addition and subtraction. The original definition of signed-digit arithmetic precludes the case of r=2 for which alpha cannot be selected in the proper range. Binary signed-digit numbers are known to allow limited-carry propagation with a somewhat more complex addition process. The author shows that a special 'recorded' representation of binary signed-digit numbers not only allows for carry-free addition and borrow-free subtraction but also offers other important advantages for the practical implementation of arithmetic functions. The recoding itself is totally parallel and can be performed in constant time, independent of operand lengths. It is also shown that binary signed-digit numbers compare favorably to other redundant schemes such as stored-carry and higher radix signed-digit representations.
机译:已经为任何基数r alpha> r范围内的任意整数。这样的数字表示系统具有足够的冗余度以允许消灭进位或借出链,因此导致快速,无传播的加法和减法。有符号数字运算的原始定义排除了无法在适当范围内选择alpha的r = 2的情况。众所周知,二进制带符号的数字允许通过稍微复杂一些的加法过程进行有限进位传播。作者表明,二进制有符号数字的特殊“记录”表示形式不仅可以实现无进位加法和无借位减法,而且还为算术功能的实际实现提供了其他重要优势。重新编码本身是完全并行的,并且可以在恒定时间内执行,而与操作数长度无关。还显示了二进制带符号的数字与其他冗余方案(如存储位和较高基数的带符号的数字)相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号