首页> 外文期刊>IEEE Transactions on Computers >On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication
【24h】

On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication

机译:关于VLSI实现的复杂性和布尔函数的图形表示及其在整数乘法中的应用

获取原文
获取原文并翻译 | 示例

摘要

Lower-bound results on Boolean-function complexity under two different models are discussed. The first is an abstraction of tradeoffs between chip area and speed in very-large-scale-integrated (VLSI) circuits. The second is the ordered binary decision diagram (OBDD) representation used as a data structure for symbolically representing and manipulating Boolean functions. The lower bounds demonstrate the fundamental limitations of VLSI as an implementation medium, and that of the OBDD as a data structure. It is shown that the same technique used to prove that any VLSI implementation of a single output Boolean function has area-time complexity AT/sup 2/= Omega (n/sup 2/) also proves that any OBDD representation of the function has Omega (c/sup n/) vertices for some c<1 but that the converse is not true. An integer multiplier for word size n with outputs numbered 0 (least significant) through 2n-1 (most significant) is described. For the Boolean function representing either output i-1 or output 2n-i-1, where 1>or=i>or=n, the following lower bounds are proved: any VLSI implementation must have AT/sup 2/= Omega (i/sup 2/) and any OBDD representation must have Omega (1.09/sup i/) vertices.
机译:讨论了在两种不同模型下布尔函数复杂度的下界结果。首先是超大规模集成(VLSI)电路中芯片面积和速度之间权衡的抽象。第二个是有序二进制决策图(OBDD)表示形式,用作表示符号和操作布尔函数的数据结构。下限说明了VLSI作为实现介质以及OBDD作为数据结构的基本局限性。结果表明,用于证明单个输出布尔函数的任何VLSI实现具有时域复杂度AT / sup 2 / = Omega(n / sup 2 /)的相同技术也证明了该函数的任何OBDD表示都具有Omega某些c <1的(c / sup n /)个顶点,但反之则不成立。描述了字大小为n的整数乘法器,其输出编号为0(最低有效)到2n-1(最高有效)。对于表示输出i-1或输出2n-i-1的布尔函数,其中1> or = i> or = n,证明了以下下限:任何VLSI实现都必须具有AT / sup 2 / = Omega(i / sup 2 /)和任何OBDD表示形式都必须具有Omega(1.09 / sup i /)顶点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号