Structures for parallel multipliers of a class of fields GF(2/sup m/) based on irreducible all one polynomials (AOP) and equally spaced polynomials (ESP) are presented. The structures are simple and modular, which is important for hardware realization. Relationships between an irreducible AOP and the corresponding irreducible ESPs have been exploited to construct ESP-based multipliers of large fields by a regular expansion of the basic modules of the AOP-based multiplier of a small field. Some features of the structures also enable a fast implementation of squaring and multiplication algorithms and therefore make fast exponentiation and inversion possible. It is shown that, if for a certain degree, an irreducible AOP as well as an irreducible ESP exist, then from the complexity point of view, it is advantageous to use the ESP-based parallel multiplier.
展开▼
机译:提出了基于不可约的所有一个多项式(AOP)和等距多项式(ESP)的一类场GF(2 / sup m /)的并行乘法器的结构。结构简单且模块化,这对于硬件实现很重要。通过定期扩展基于AOP的小场乘数的基本模块,已利用不可约AOP和相应的不可约ESP之间的关系来构造基于ESP的大场乘数。结构的某些功能还可以实现平方和乘法算法的快速实现,因此可以实现快速求幂和求逆。结果表明,如果在一定程度上存在不可还原的AOP以及不可还原的ESP,那么从复杂性的角度来看,使用基于ESP的并行乘法器是有利的。
展开▼