首页> 外文期刊>IEEE Transactions on Computers >Optimal parallel and pipelined processing through a new class of matrices with application to generalized spectral analysis
【24h】

Optimal parallel and pipelined processing through a new class of matrices with application to generalized spectral analysis

机译:通过一类新的矩阵进行最佳的并行和流水线处理,并应用于广义频谱分析

获取原文
获取原文并翻译 | 示例

摘要

A new class of general-base matrices, named sampling matrices, which are meant to bridge the gap between algorithmic description and computer architecture is proposed. "Poles," "zeros," "pointers," and "spans" are among the terms introduced to characterize properties of this class of matrices. A formalism for the decomposition of a general matrix in terms of general-base sampling matrices is proposed. "Span" matrices are introduced to measure the dependence of a matrix span on algorithm parameters and, among others, the interaction between this class of matrices and the general-base perfect shuffle permutation matrix previously introduced. A classification of general-base parallel "recirculant" and parallel pipelined processors based on memory topology, access uniformity and shuffle complexity is proposed. The matrix formalism is then used to guide the search for algorithm factorizations leading to optimal parallel and pipelined processor architecture.
机译:提出了一种新的通用基矩阵,称为采样矩阵,旨在弥合算法描述和计算机体系结构之间的差距。 “极”,“零”,“指针”和“跨度”是用来表征此类矩阵性质的术语。提出了一种基于通用采样矩阵分解通用矩阵的形式主义。引入“跨度”矩阵来测量矩阵跨度与算法参数之间的相关性,以及此类矩阵与先前介绍的基于一般基础的完美混洗置换矩阵之间的相互作用。提出了基于内存拓扑,访问均匀性和混洗复杂度的通用通用并行“循环”处理器和并行流水线处理器的分类。然后使用矩阵形式主义来指导对算法分解的搜索,从而实现最佳的并行和流水线处理器架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号