首页> 外文期刊>IEEE Transactions on Computers >A residue arithmetic extension for reliable scientific computation
【24h】

A residue arithmetic extension for reliable scientific computation

机译:残差算术扩展,可实现可靠的科学计算

获取原文
获取原文并翻译 | 示例

摘要

A reliable scientific computation approach, substantially different from the known ones, based on Residue Number System (RNS) floating-point arithmetic is described. In the approach, the real number is represented by an expression which consists of two parts, the approximate part and the interval error part. The approximate part, represented by an RNS floating-point number, shows an approximate value for the real number. The interval error value, represented by two RNS floating-point numbers, shows the left and the right limit of an interval containing the error. In parallel to the result of operation, the rounding error induced by that operation is determined and then summed up in each operation. When a series of operations is completed, the range of existence for the result can be determined from the result of the computation and the sum of interval errors. For the illustration of the proposed method, some examples are also given, which are said to be difficult to find exact solution in the usual floating-point calculation.
机译:描述了一种基于残数系统(RNS)浮点算法的,与已知方法大不相同的可靠科学计算方法。在该方法中,实数由一个表达式表示,该表达式由两部分组成:近似部分和间隔误差部分。由RNS浮点数表示的近似部分显示了实数的近似值。由两个RNS浮点数表示的间隔错误值显示了包含该错误的间隔的左边界和右边界。与运算结果并行,确定由该运算引起的舍入误差,然后在每个运算中求和。当一系列操作完成时,可以从计算结果和间隔误差的总和中确定结果的存在范围。为了说明所提出的方法,还给出了一些示例,据说很难在常规浮点计算中找到确切的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号