首页> 外文期刊>IEEE Transactions on Computers >Fast arithmetic for public-key algorithms in Galois fields with composite exponents
【24h】

Fast arithmetic for public-key algorithms in Galois fields with composite exponents

机译:具有复合指数的Galois字段中公钥算法的快速算法

获取原文
获取原文并翻译 | 示例

摘要

The article describes a novel class of arithmetic architectures for Galois fields GF(2/sup k/). The main applications of the architecture are public key systems which are based on the discrete logarithm problem for elliptic curves. The architectures use a representation of the field GF(2/sup k/) as GF((2/sup n/)/sup m/), where k=n/spl middot/m. The approach explores bit parallel arithmetic in the subfield GF(2/sup n/) and serial processing for the extension field arithmetic. This mixed parallel-serial (hybrid) approach can lead to fast implementations. As the core module, a hybrid multiplier is introduced and several optimizations are discussed. We provide two different approaches to squaring. We develop exact expressions for the complexity of parallel squarers in composite fields, which can have a surprisingly low complexity. The hybrid architectures are capable of exploring the time-space trade-off paradigm in a flexible manner. In particular, the number of clock cycles for one field multiplication, which is the atomic operation in most public key schemes, can be reduced by a factor of n compared to other known realizations. The acceleration is achieved at the cost of an increased computational complexity. We describe a proof-of-concept implementation of an ASIC for multiplication and squaring in GF((2/sup n/)/sup m/), m variable.
机译:本文介绍了Galois场GF(2 / sup k /)的一类新颖的算术架构。该体系结构的主要应用是公钥系统,该系统基于椭圆曲线的离散对数问题。架构使用字段GF(2 / sup k /)表示为GF((2 / sup n /)/ sup m /),其中k = n / spl middot / m。该方法探索子字段GF(2 / sup n /)中的位并行算法以及扩展字段算法的串行处理。这种混合并行-串行(混合)方法可以导致快速实现。作为核心模块,引入了混合乘法器,并讨论了几种优化方法。我们提供两种不同的平方方法。我们为复合场中并行平方器的复杂度开发了精确的表达式,该表达式可能具有令人惊讶的低复杂度。混合架构能够灵活地探索时空权衡范式。特别地,与其他已知的实现方式相比,可以将一个场乘法的时钟周期数减少n倍,这是大多数公钥方案中的基本操作。以增加的计算复杂度为代价来实现加速。我们描述了用于GF((2 / sup n /)/ sup m /),m变量的乘法和平方的ASIC的概念验证实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号