首页> 外文期刊>IEEE Transactions on Computers >Digit selection for SRT division and square root
【24h】

Digit selection for SRT division and square root

机译:SRT分区和平方根的数字选择

获取原文
获取原文并翻译 | 示例

摘要

The quotient digit selection in the SRT division algorithm is based on a few most significant bits of the remainder and divisor, where the remainder is usually represented in a redundant representation. The number of leading bits needed depends on the quotient radix and digit set, and is usually found by an extensive search, to assure that the next quotient digit can be chosen as valid for all points (remainder, divisor) in a set defined by the truncated remainder and divisor, i.e., an "uncertainty rectangle." This work presents expressions for the number of bits needed from the truncated remainder and divisor (the truncation parameters), thus eliminating the need for a search through the truncation parameter space for validation. The analysis is then extended to the digit selection in SRT square root algorithms, where it is shown that, in general, it may be necessary to increase the number of leading bits needed for digit determination in a combined divide and square root algorithm. An easy condition to check the number of bits needed is established, also checking the number of initial digits of the root may have to be found by other means, e.g., by table look-up. The minimally redundant, radix-4 combined divide and square root algorithm is finally analyzed and it is shown that, in this case, it can be implemented without such a special table to determine initial digits for the square root.
机译:SRT除法算法中的商数选择基于余数和除数的几个最高有效位,其中余数通常以冗余表示形式表示。所需的前导位数取决于商数基数和数字集,通常通过广泛的搜索来找到,以确保下一个商数对于由定义的集合中的所有点(余数,除数)都可以选择为有效。截断的余数和除数,即“不确定矩形”。这项工作提出了截断的余数和除数(截断参数)所需的位数的表达式,从而消除了在截断参数空间中进行搜索以进行验证的需求。然后将分析扩展到SRT平方根算法中的数字选择,其中表明,通常,可能有必要增加组合除法和平方根算法中数字确定所需的前导位数。建立了检查所需位数的简单条件,还可能必须通过其他方式(例如通过查表)来找到根的初始位数。最后分析了最小冗余的,基数为4的除法和平方根组合算法,结果表明,在这种情况下,无需这种特殊表即可确定平方根的初始位数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号