首页> 外文期刊>IEEE Transactions on Computers >Bit-parallel finite field multipliers for irreducible trinomials
【24h】

Bit-parallel finite field multipliers for irreducible trinomials

机译:不可约三项式的位并行有限域乘法器

获取原文
获取原文并翻译 | 示例

摘要

A new formulation for the canonical basis multiplication in the finite fields GF(2/sup m/) based on the use of a triangular basis and on the decomposition of a product matrix is presented. From this algorithm, a new method for multiplication (named transpositional) applicable to general irreducible polynomials is deduced. The transpositional method is based on the computation of 1-cycles and 2-cycles given by a permutation defined by the coordinate of the product to be computed and by the cardinality of the field GF(2/sup m/). The obtained cycles define groups corresponding to subexpressions that can be shared among the different product coordinates. This new multiplication method is applied to five types of irreducible trinomials. These polynomials have been widely studied due to their low-complexity implementations. The theoretical complexity analysis of the corresponding bit-parallel multipliers shows that the space complexities of our multipliers match the best results known to date for similar canonical GF(2/sup m/) multipliers. The most important new result is the reduction, in two of the five studied trinomials, of the time complexity with respect to the best known results.
机译:提出了基于三角基和乘积矩阵分解的有限域GF(2 / sup m /)中规范基础乘法的新公式。从该算法中,推导了适用于一般不可约多项式的乘积新方法(称为转置)。换位方法基于1个循环和2个循环的计算,该循环由要计算的乘积的坐标和字段GF(2 / sup m /)的基数定义的置换给出。获得的循环定义了与可以在不同乘积坐标之间共享的子表达式相对应的组。这种新的乘法方法适用于五种不可约的三项式。这些多项式由于其低复杂度的实现而被广泛研究。相应的位并行乘法器的理论复杂度分析表明,我们的乘法器的空间复杂度与同类经典GF(2 / sup m /)乘法器迄今已知的最佳结果相匹配。最重要的新结果是在五个研究的三项式中有两个相对于最著名的结果减少了时间复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号