首页> 外文期刊>Computers, IEEE Transactions on >A Chinese Remainder Theorem Approach to Bit-Parallel Polynomial Basis Multipliers for Irreducible Trinomials
【24h】

A Chinese Remainder Theorem Approach to Bit-Parallel Polynomial Basis Multipliers for Irreducible Trinomials

机译:不可约三项的位并行多项式基乘的中国余数定理方法

获取原文
获取原文并翻译 | 示例

摘要

We show that the step “modulo the degree- field generating irreducible polynomial” in the classical definition of the multiplication operation can be avoided. This leads to an alternative representation of the finite field multiplication operation. Combining this representation and the Chinese Remainder Theorem, we design bit-parallel multipliers for irreducible trinomials on where . For some values of , our architectures have the same time complexity as the fastest bit-parallel multipliers—the quadratic multipliers, but their space complexities are reduced. Take the special irreducible trinomial for example, the space complexity of the proposed - esign is reduced by about , while the time complexity matches the best result. Our experimental results show that among the 539 values of such that and is irreducible over for some in the range , the proposed multipliers beat the current fastest parallel multipliers for 290 values of when : they have the same time complexity, but the space complexities are reduced by
机译:我们表明,可以避免乘法运算的经典定义中的步骤“对生成度场的不可约多项式取模”。这导致有限域乘法运算的另一种表示形式。将该表示形式与中国余数定理相结合,我们为where上的不可约三项式设计位并行乘法器。对于的某些值,我们的体系结构具有与最快的比特并行乘法器(二次乘法器)相同的时间复杂度,但是它们的空间复杂度降低了。以特殊的不可约三项式为例,所提出的-esign的空间复杂度降低了,而时间复杂度匹配了最佳结果。我们的实验结果表明,在这样的539个值中,对于某些范围内的,它们是不可约的,建议的乘法器在以下情况下的290个值上击败了当前最快的并行乘法器:时间复杂度相同,但空间复杂度降低了通过

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号