首页> 外文期刊>Computers, IEEE Transactions on >Subquadratic Space Complexity Binary Field Multiplier Using Double Polynomial Representation
【24h】

Subquadratic Space Complexity Binary Field Multiplier Using Double Polynomial Representation

机译:使用双多项式表示的二次空间复杂度二元场乘法器

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with binary field multiplication. We use the bivariate representation of binary field called Double Polynomial System (DPS) presented in . This concept generalizes the composite field representation to every finite field. As shown in , the main interest of DPS representation is that it enables to use Lagrange approach for multiplication, and in the best case, Fast Fourier Transform approach, which optimizes Lagrange approach. We use here a different strategy from to perform reduction, and we also propose in this paper, some new approaches for constructing DPS. We focus on DPS, which provides a simpler and more efficient method for coefficient reduction. This enables us to avoid a multiplication required in the Montgomery reduction approach of , and thus to improve the complexity of the DPS multiplier. The resulting algorithm proposed in the present paper is subquadratic in space O(n^{1.31}) and logarithmic in time. The space complexity is 33 percent better than in and 18 percent faster. It is asymptotically more efficient than the best known method (specifiably more efficient than when n ge 3,000). Furthermore, our proposal is available for every n and not only for n a power of two or three.
机译:本文涉及二进制字段乘法。我们使用称为的双多项式系统(DPS)的二进制字段的双变量表示。该概念将组合字段表示形式推广到每个有限字段。如图所示,DPS表示的主要兴趣在于它能够使用拉格朗日方法进行乘法运算,而在最佳情况下,它是用于优化拉格朗日方法的快速傅里叶变换方法。在这里,我们使用与执行还原不同的策略,并且在本文中,我们还提出了一些构建DPS的新方法。我们专注于DPS,它提供了一种更简单,更有效的系数降低方法。这使我们能够避免Montgomery约简方法中所需的乘法,从而提高了DPS乘法器的复杂性。本文提出的结果算法在空间O(n ^ {1.31})中是次二次的,并且在时间上是对数的。空间复杂度比英寸提高了33%,速度提高了18%。它比最著名的方法渐近更有效(特别是比ge 3,000时更有效)。此外,我们的建议适用于每n个,而不仅仅是n的2或3的幂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号