首页> 外文期刊>Computers, IEEE Transactions on >Scheduling Concurrent Bag-of-Tasks Applications on Heterogeneous Platforms
【24h】

Scheduling Concurrent Bag-of-Tasks Applications on Heterogeneous Platforms

机译:在异构平台上调度并发任务袋应用程序

获取原文
获取原文并翻译 | 示例

摘要

Scheduling problems are already difficult on traditional parallel machines, and they become extremely challenging on heterogeneous clusters. In this paper, we deal with the problem of scheduling multiple applications, made of collections of independent and identical tasks, on a heterogeneous master-worker platform. The applications are submitted online, which means that there is no a priori (static) knowledge of the workload distribution at the beginning of the execution. The objective is to minimize the maximum stretch, i.e., the maximum ratio between the actual time an application has spent in the system and the time this application would have spent if executed alone. On the theoretical side, we design an optimal algorithm for the offline version of the problem (when all release dates and application characteristics are known beforehand). We also introduce a heuristic for the general case of online applications. On the practical side, we have conducted extensive simulations and MPI experiments, showing that we are able to deal with very large problem instances in a few seconds. Also, the solution that we compute totally outperforms classical heuristics from the literature, thereby fully assessing the usefulness of our approach.
机译:在传统的并行计算机上,调度问题已经很困难,并且在异构集群上,它们变得极具挑战性。在本文中,我们解决了在异构主工作平台上调度由独立且相同任务的集合组成的多个应用程序的问题。这些应用程序是在线提交的,这意味着在执行开始时就没有工作负载分配的先验(静态)知识。目的是使最大延展最小化,即,应用程序在系统中花费的实际时间与如果单独执行该应用程序所花费的时间之间的最大比率。从理论上讲,我们为问题的脱机版本(当所有发行日期和应用程序特性事先已知时)设计了一种最佳算法。我们还将介绍在线应用程序一般情况下的启发式方法。在实践方面,我们进行了广泛的仿真和MPI实验,表明我们能够在几秒钟内处理非常大的问题实例。同样,我们计算的解决方案完全优于文献中的经典启发式方法,从而全面评估了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号