首页> 外文期刊>Computers, IEEE Transactions on >An Empirical Architecture-Centric Approach to Microarchitectural Design Space Exploration
【24h】

An Empirical Architecture-Centric Approach to Microarchitectural Design Space Exploration

机译:微架构设计空间探索的以经验为中心的以建筑为中心的方法

获取原文
获取原文并翻译 | 示例

摘要

The microarchitectural design space of a new processor is too large for an architect to evaluate in its entirety. Even with the use of statistical simulation, evaluation of a single configuration can take an excessive amount of time due to the need to run a set of benchmarks with realistic workloads. This paper proposes a novel machine-learning model that can quickly and accurately predict the performance and energy consumption of any new program on any microarchitectural configuration. This architecture-centric approach uses prior knowledge from offline training and applies it across benchmarks. This allows our model to predict the performance of any new program across the entire microarchitecture configuration space with just 32 further simulations. First, we analyze our design space and show how different microarchitectural parameters can affect the cycles, energy, energy-delay (ED), and energy-delay-squared (EDD) of the architectural configurations. We show the accuracy of our predictor on SPEC CPU 2000 and how it can be used to predict programs from a different benchmark suite. We then compare our approach to a state-of-the-art program-specific predictor and show that we significantly reduce prediction error. We reduce the average error when predicting performance from 24 percent to just seven percent and increase the correlation coefficient from 0.55 to 0.95. Finally, we evaluate the cost of offline learning and show that we can still achieve a high coefficient of correlation when using just five benchmarks to train.
机译:新处理器的微体系结构设计空间太大,因此架构师无法对其进行整体评估。即使需要使用统计仿真,由于需要运行一组具有实际工作负载的基准测试,单个配置的评估也可能花费大量时间。本文提出了一种新颖的机器学习模型,该模型可以快速准确地预测在任何微体系结构配置下任何新程序的性能和能耗。这种以架构为中心的方法使用脱机培训中的先验知识,并将其应用于基准测试。这使我们的模型仅需进行32次模拟,就可以预测整个微体系结构配置空间中任何新程序的性能。首先,我们分析设计空间并展示不同的微体系结构参数如何影响建筑配置的周期,能量,能量延迟(ED)和能量延迟平方(EDD)。我们将展示我们的预测器在SPEC CPU 2000上的准确性,以及如何将其用于预测来自不同基准套件的程序。然后,我们将我们的方法与最新的程序特定的预测器进行比较,并表明我们显着减少了预测误差。我们将预测性能时的平均误差从24%降低到7%,并将相关系数从0.55提高到0.95。最后,我们评估了离线学习的成本,并表明即使仅使用五个基准进行训练,我们仍然可以获得较高的相关系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号