首页> 美国政府科技报告 >Performance, Resources, and Complexity: A Systematic Approach to Microarchitectural Design
【24h】

Performance, Resources, and Complexity: A Systematic Approach to Microarchitectural Design

机译:性能,资源和复杂性:微架构设计的系统方法

获取原文

摘要

VLSI design in general--microprocessor design in particular-- has been treated more like an art than a science in the past. The goal of this thesis is to explain the science of VLSI design to someone who wants to build a microprocessor. This can be accomplished by providing a quantitative way to evaluate, and a systematic approach to design, a microprocessor. Resources and complexity are two separate ways a microprocessor designer can pay for performance. The microprocessor designer must evaluate the performance, resources, and complexity tradeoffs quantitatively. In this thesis, the SPUR (SPUR stands for Symbolic Processing Using RISC Machines) CPU microarchitecture is used as example to show how performance, resources, and complexity tradeoffs can be evaluated quantitatively. A systematic approach to microarchitectural design is then developed based on the SPUR CPU design experience. The SPUR CPU is implemented in 1.6um, double layer metal, CMOS technology. It consists of 115,000 transistors, runs at 100ns, and consumes 0.8W of power. Important features of the SPUR CPU are: an internal instruction cache; a four-stage pipeline; support for LISP; a cache controller interface for multiprocessing and virtual memory support; and a parallel coprocessor interface for floating point arithmetic support. All these features make the SPUR CPU significantly different and more complex than previous generations of Berkeley RISC machines.

著录项

  • 作者

    Kong, SI;

  • 作者单位
  • 年度 1989
  • 页码 1-238
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号