首页> 外文期刊>Computers, IEEE Transactions on >NO2: Speeding up Parallel Processing of Massive Compute-Intensive Tasks
【24h】

NO2: Speeding up Parallel Processing of Massive Compute-Intensive Tasks

机译:NO2:加速大规模计算密集型任务的并行处理

获取原文
获取原文并翻译 | 示例

摘要

Large-scale computing frameworks, either tenanted on the cloud or deployed in the high-end local cluster, have become an indispensable software infrastructure to support numerous enterprise and scientific applications. Tasks executed on these frameworks are generally classified into data-intensive and compute-intensive ones. However, most existing frameworks, led by MapReduce, are mainly suitable for data-intensive tasks. Their task schedulers assume that the proportion of data I/O reflects the task progress and state. Unfortunately, this assumption does not apply to most compute-intensive tasks. Due to biased estimation of task progress, traditional frameworks cannot timely cut off outliers and therefore largely prolong execution time when performing compute-intensive tasks. We propose a new framework designed for compute-intensive tasks. By using instrumentation and automatic instrument point selector, our framework estimates the compute-intensive task progress without resorting to data I/O. We employ a clustering method to identify outliers at runtime and perform speculative execution/aborting, speeding up task execution by up to 25%. Moreover, our improvement to bare instrumentation limits overhead within 0.1%, and the aborting-based execution only introduces 10% more average CPU usage. Low overhead and resource consumption make our framework practically usable in the production environment.
机译:租用在云端或部署在高端本地集群中的大规模计算框架已成为支持众多企业和科学应用程序必不可少的软件基础架构。在这些框架上执行的任务通常分为数据密集型和计算密集型。但是,由MapReduce领导的大多数现有框架主要适合于数据密集型任务。他们的任务计划程序假定数据I / O的比例反映了任务的进度和状态。不幸的是,该假设不适用于大多数计算密集型任务。由于对任务进度的估计有偏差,传统框架无法及时消除异常值,因此在执行计算密集型任务时会大大延长执行时间。我们提出了一个专为计算密集型任务设计的新框架。通过使用检测和自动检测点选择器,我们的框架无需使用数据I / O即可估计计算密集型任务的进度。我们采用聚类方法在运行时识别异常值并执行推测性执行/中止操作,从而将任务执行速度提高了25%。此外,我们对裸仪器的改进将开销限制在0.1%以内,而基于中止的执行只会使平均CPU使用率提高10%。低开销和资源消耗使我们的框架在生产环境中切实可用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号