首页> 外文期刊>Computers, IEEE Transactions on >Energy Minimization in Multi-Task Software-Defined Sensor Networks
【24h】

Energy Minimization in Multi-Task Software-Defined Sensor Networks

机译:多任务软件定义的传感器网络中的能量最小化

获取原文
获取原文并翻译 | 示例

摘要

After a decade of extensive research on application-specific wireless sensor networks (WSNs), the recent development of information and communication technologies makes it practical to realize the software-defined sensor networks (SDSNs), which are able to adapt to various application requirements and to fully explore the resources of WSNs. A sensor node in SDSN is able to conduct multiple tasks with different sensing targets simultaneously. A given sensing task usually involves multiple sensors to achieve a certain quality-of-sensing, e.g., coverage ratio. It is significant to design an energy-efficient sensor scheduling and management strategy with guaranteed quality-of-sensing for all tasks. To this end, three issues are investigated in this paper: 1) the subset of sensor nodes that shall be activated, i.e., sensor activation, 2) the task that each sensor node shall be assigned, i.e., task mapping, and 3) the sampling rate on a sensor for a target, i.e., sensing scheduling. They are jointly considered and formulated as a mixed-integer with quadratic constraints programming (MIQP) problem, which is then reformulated into a mixed-integer linear programming (MILP) formulation with low computation complexity via linearization. To deal with dynamic events such as sensor node participation and departure, during SDSN operations, an efficient online algorithm using local optimization is developed. Simulation results show that our proposed online algorithm approaches the globally optimized network energy efficiency with much lower rescheduling time and control overhead.
机译:在对专用无线传感器网络(WSN)进行了十多年的广泛研究之后,信息和通信技术的最新发展使实现能够满足各种应用需求的软件定义的传感器网络(SDSN)成为现实。充分开发WSN的资源。 SDSN中的传感器节点能够同时执行具有不同感测目标的多个任务。给定的传感任务通常涉及多个传感器,以实现一定的传感质量,例如覆盖率。设计一种节能的传感器调度和管理策略,并确保所有任务的传感质量,这一点非常重要。为此,本文研究了三个问题:1)应激活的传感器节点的子集,即传感器激活; 2)应分配每个传感器节点的任务,即任务映射; 3)目标的传感器上的采样率,即感知调度。它们被共同考虑并公式化为带有二次约束规划(MIQP)问题的混合整数,然后通过线性化将其重新构造为具有较低计算复杂度的混合整数线性规划(MILP)公式。为了处理动态事件,例如传感器节点参与和离开,在SDSN操作期间,开发了一种使用局部优化的有效在线算法。仿真结果表明,本文提出的在线算法以较低的调度时间和控制开销实现了全局优化的网络能效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号