首页> 中国专利> 一种最小化软件定义无线传感器网络能耗的方法

一种最小化软件定义无线传感器网络能耗的方法

摘要

本发明公开了一种最小化软件定义无线传感器网络能耗的方法。首先,SD?WSN控制器根据网络中各节点的位置信息,获得节点之间的路径损耗信道特性。其次,以最小化传感器节点的能耗为目标,在满足给定信干噪比的条件下,建立优化问题。然后,采用半正定松弛将原非凸问题转化成凸优化问题。最后,通过求解半正定规划获得全局最优解,得到带宽和功率的最优化分配。该资源分配方法,可降低传感器节点在数据传输过程中的能耗,从而延长整个网络的工作寿命。

著录项

  • 公开/公告号CN105813116A

    专利类型发明专利

  • 公开/公告日2016-07-27

    原文格式PDF

  • 申请/专利权人 东南大学;

    申请/专利号CN201610235420.7

  • 申请日2016-04-15

  • 分类号H04W24/02(20090101);H04W52/02(20090101);H04W64/00(20090101);H04W72/04(20090101);H04W84/18(20090101);

  • 代理机构南京苏高专利商标事务所(普通合伙);

  • 代理人娄嘉宁

  • 地址 210018 江苏省南京市玄武区四牌楼2号

  • 入库时间 2023-06-19 00:13:49

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-29

    授权

    授权

  • 2016-08-24

    实质审查的生效 IPC(主分类):H04W24/02 申请日:20160415

    实质审查的生效

  • 2016-07-27

    公开

    公开

说明书

技术领域

本发明属于无线传感器网络的资源管理领域,特别涉及一种最小化软件定义无线传 感器网络能耗的方法。

背景技术

软件定义网络(SoftwareDefinedNetworks,SDN)是一种新型计算机网络创新架 构,是实现网络虚拟化的一种实现方式,通过将网络设备控制面与数据面分离开来,从 而实现了网络流量的灵活控制,使网络作为管道变得更加智能。SDN的概念现已逐步运 用到无线网络中,例如蜂窝网、车辆自组织网络、无线Mesh网络、无线传感器网络 (WirelessSensorNetworks,WSN),以及异构网络等。将SDN运用到WSN中,使得 WSN节点通过软件定义达到工作性能最优化。

WSN一个最主要的特点是传感器节点能量受限,在实际的工作环境中,需要设法 降低传感器节点的能耗,以延长其工作寿命。由于数字芯片技术的快速发展,使得WSN 中的节点实现可编程,大大提升了网络的灵活性。但是如何有效的降低传感器节点的能 耗成了目前备受关注的问题。

发明内容

发明目的:为了克服现有技术的不足,本发明提供了一种有效降低了传感器节点的 能耗的最小化软件定义无线传感器网络能耗的方法。

技术方案:本发明提供了一种最小化软件定义无线传感器网络能耗的方法,包括以 下步骤:

步骤1:控制器根据转发器节点和传感器节点的连通性获得整个网络拓扑,并通过 基于信号强度的定位方式对数据面的传感器节点进行定位,获得传感器节点之间的位置 信息;

步骤2:以最小化整个网络中所有传感器节点的能耗为目标函数,并设置约束条件, 其中所述约束条件包括:各个传感器节点发射功率不超过的最大功率;满足各个传感器 节点所需的最小带宽;每个小区所有传感器节点占用带宽之和不超过最大带宽限制;满 足最小信干噪比;

步骤3:当传感器节点所占用的带宽一定或者发射功率一定时,通过半正定松弛将 步骤2中设置的非线性约束转换成线性矩阵不等式,最小化问题转化为凸优化问题,从 而获得松弛后问题的全局最优解,此时获得的所述全局最优解为最优功率分配或者最优 带宽分配;当传感器节点所占用的带宽和发射功率均可变时,将步骤2中设置目标函数 和非线性约束进行松弛,建立半正定规划问题,从而获得松弛后问题的全局最优解,此 时获得的所述全局最优解为带宽和功率最优联合分配结果;

步骤4:控制器根据不同的场景,将步骤3中获得的资源分配结果采用下发流表方 式,通过转发器节点传递给传感器节点,从而对传感器节点进行配置。

进一步,所述的传感器节点位于SD-WSN(软件定义无线传感器网络,Software DefinedWirelessSensorNetworks,文中简称SD-WSN)的数据面,由低能耗器件实现, 所述传感器节点执行信息的采集、上传和流表操作。

进一步,所述低能耗器件为TICC2530或FreescaleMC1322x。

进一步,所述步骤2中的小区由一个转发器以及与其直接相连的传感器节点所组成, 转发器视为小区的基站,控制器将无线空口资源的分配策略通过转发器下发到各个传感 器节点,传感器节点根据无线空口资源的分配策略进行功率、带宽等资源的分配;当网 络中的节点个数发生变化时,控制器根据更新后的网络状态,对空口资源进行重配置。

工作原理:本发明在SD-WSN中提出了一种最小化传感器节点能耗的资源分配方 法,通过对传感器节点占用带宽和发射功率的合理分配,降低传感器节点在数据传输过 程中的能耗,从而延长传感器节点的工作寿命。该资源分配方法以最小化传感器节点的 能耗为目标,在满足给定信干噪比、带宽、功率等约束的条件下,针对传感器节点的带 宽固定、功率固定、带宽和功率均可变等情形,建立优化问题。由于所建立的优化问题 目标函数和约束条件的非线性,原优化问题往往是非凸优化问题。为了有效解决原非凸 问题,本发明采用半正定松弛,将原非凸问题转化为凸的半正定规划,从而可以快速有 效的获得其全局最优解,即最优分配结果,从而降低传感器节点传输数据时的能耗。

有益效果:与现有技术相比,本发明在SD-WSN中,以最小化传感器节点的能耗 为目标,建立优化问题,通过半正定规划求解原优化问题,实现对传感器节点的带宽和 功率资源的合理分配,从而降低传感器节点在数据传输过程中的能耗,从而延长整个网 络的工作寿命。

附图说明

图1为本发明中软件定义无线传感器网络原理图;

图2为本发明工作流程图;

图3为本发明中小区划分示意图。

具体实施方式

下面结合附图对本发明做更进一步的解释。

如图1所示,SD-WSN网络架构下,控制器根据网络状态,如网络拓扑,传感器 节点的最大发射功率Pmax,小区的总带宽Bmax等,在保证最小信干噪比γth条件下,采 用最小化能耗的资源分配方法,并将分配策略通过下发流表的方式,对传感器节点进行 配置。如图2所示,包括以下步骤:

步骤1:控制器根据转发器节点和传感器节点的连通性获得整个网络拓扑。转发器 接收传感器节点发送的HELLO信息,通过测得接收信号强度,通过三边定位法获得传 感器节点的位置信息。其中,传感器节点位于SD-WSN的数据面,由低能耗器件实现, 传感器节点执行信息的采集、上传和流表操作。低能耗器件一般采用TICC2530或 FreescaleMC1322x。

步骤2:以最小化网络中所有传感器节点的能耗为目标函数,设定约束条件为:① 各个传感器节点发射功率不超过最大功率限制,建立优化问题;②满足各个传感器节点 所需的最小带宽;③每个小区所有传感器节点占用带宽之和不超过最大带宽限制;④满 足最小信干噪比。

步骤3:当传感器节点所占用带宽一定或者发射功率一定时,通过半正定松弛将原 优化问题中的非线性约束④转换成线性矩阵不等式,最小化问题由此转化为凸优化问题, 从而获得松弛后问题的全局最优解,即最优功率分配或者最优带宽分配;当传感器节点 所占用带宽和发射功率均可变时,将原优化问题中的目标函数和非线性约束④均进行松 弛,建立半正定规划问题,从而获得松弛后问题的全局最优解,即带宽和功率最优联合 分配结果。

步骤4:控制器根据不同的场景,将资源分配结果采用下发流表方式,转发器节点 分配好的资源对(Bj,q,i,Pj,q,i)传给传感器节点,通过修改流表实现对传感器节点的配 置。

实施例:

本实施例中传感器网络分为M个小区组,各小区组采用TDMA方式分成Q个小区, 即两个不同小区占用不同的时隙s、q,其中,1≤s≤Q,1≤q≤Q,s≠q。各小区采用FDMA 方式,将带资源分配给Nc个传感器节点,则占用时隙q的两个节点分配到的频点为fq,v、 fq,w,其中,1≤v≤Nc,1≤w≤Nc,v≠w。如图3所示,M=4,Q=9。相同时隙的小区之间存 在同频干扰。在第j个小区组中,占用时隙q的转发器节点为bj,q,第i个占用时隙q的 传感器节点为nj,q,i

步骤1:控制器根据转发器节点和传感器节点的连通性获得整个网络拓扑,并通过 基于信号强度的定位方式对数据面的节点进行定位,获得节点之间的位置信息;

步骤2:建立优化问题:

min{B,P}E(B,P)=1NbΣjΣqΣi{[(1+α)Ptj,q,i+Pc]Tsj,q,i+PtrTtr}

s.t.C1:0(1+α)Ptj,q,i+Pcmax,i,j,q

C2:0Bj,q,iBmax,i,j,q---(1)

C3:Σi=1NcBj,q,iBmax,j,q

C4:γi,bj,qγth,i,j,q

C5:Bj,q,iTsj,q,i1,i,j,q;

其中,E(B,P)表示网络中所有传感器节点的能耗,其为带宽向量B和功率向量P的 函数。Nb为传感器节点传输的符号长度,α为漏极效率常量,Bj,q,i为传感器节点nj,q,i占 用带宽。Ptj,q,i为传感器节点nj,q,i的发射功率,Pc为电路固有的能耗,Ptr为过渡态的能 耗,过渡态即为电路在工作和休眠之间进行相互转换时的状态;其中Pc与Ptr为定值, 通常可对电路进行测量以获得具体的数值。Tsj,q,i为传感器节点nj,q,i传输一个符号时长, Ttr为过渡态的时长。传感器节点nj,q,i与转发器节点bj,q之间的信干噪比为

γi,bj,q=Ptj,q,igi->bj,qBj,q,iNo+ΣkC*,qCj,qρ·Ptj,q,kgk->bj,q

其中,No为噪声功率,ρ为干扰系数(此TDMA系统中,ρ=1)。传感器节点nj,q,i与转 发器节点bj,q的路径损耗信道增益为:

其中,Gl为常量,λ为波长。Cj,q表示小区组j中的采用时隙q的小区,为传感器节 点nj,q,i的位置坐标,αj,q为bj,q的位置坐标,bj,q为Cj,q的转发器节点,对该小区的传感器 节点进行管理,C*,q为采用时隙q的小区组成的集合。

步骤3:当传感器节点nj,q,i发射功率一定时,设发射功率为Pt。引入的辅助变量

其中

则(1)中约束C4可写成

PtTsj,q,iζj,q,i2

将上述不等式和(1)中的C5写成线性矩阵不等式,得到半正定规划:

min{B,P}E{B,P}=ΣjΣqΣi{Tsj,q,ib[(1+α)Pt+Pc]+PtrTtrNb}

s.t.C1:0≤(1+α)Pt+Pc≤Pmax

C2:0≤Bj,q,i≤Bmax

C3:Σi=1NcBj,q,iBmax---(2)

其中,b为每个传输符号的比特数。

通过优化工具箱CVX求解(2),获得传感器节点的最优带宽分配结果。

当传感器节点nj,q,i带宽一定时,将带宽设为Bmax/Nc。此时,(1)的约束C4可写成 向量形式:

APt≥b

其中,功率向量和固定带宽向量为

Pt=[Pt1,q,i,Pt2,q,i,...,PtM,q,i]T,b=γthBmaxNcNo[1,1,...,1]T

系数矩阵为

此外,引入的两个辅助变量

τj,q,i=TsPtj,q,i,Γj,q,i=τj,q,i2

通过半正定松弛,将上述等式关系写成线性矩阵不等式,获得半正定规划:

min{B,P}E(B,P)=(1+α)bΣjΣqΣiτj,q,i+MONcPcbTs+MPtrTtrNb

s.t.C1:0≤(1+α)Ptj,q,i+Pc≤Pmax

C4:diag(APt-b)≥0

其中,Ts为传感器节点nj,q,i传输一个符号时长,此种情形下为定值。通过优化工具箱 CVX求解(3),可获得传感器节点的最优功率分配结果。

当传感器节点nj,q,i发射功率和占用带宽均可变时,同理,将(1)的约束C4可写成 向量形式:

APt≥η

其中,带宽向量为

η=γthNo[B1,q,i,B2,q,i,…,BM,q,i]T

引入辅助变量,

tj,q,i=Tsj,q,iPtj,q,i,λj,q,i=(tj,q,i)2,ωj,q,i=(Bj,q,i)2

通过半正定松弛,可将上述等式关系写成线性矩阵不等式,获得半正定规划:

min{B,P}E(B,P)=ΣjΣqΣi[(1+α)btj,q,i+PcbTsj,q,i]+MPtrTtrNb

s.t.C1,C2,C3

C4:diag(APt-η)≥0

通过优化工具箱CVX求解(4),从而可获得带宽和功率最优联合分配结果。

步骤4:控制器根据不同的场景,将资源分配结果采用下发流表方式,转发器节点 分配好的资源对(Bj,q,i,Pj,q,i)传给传感器节点,通过修改流表实现对传感器节点的配 置。

以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限, 但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利 要求书中记载的保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号