首页> 外文期刊>Computers, IEEE Transactions on >Reconfiguring Three-Dimensional Processor Arrays for Fault-Tolerance: Hardness and Heuristic Algorithms
【24h】

Reconfiguring Three-Dimensional Processor Arrays for Fault-Tolerance: Hardness and Heuristic Algorithms

机译:重新配置三维处理器阵列以实现容错:硬度和启发式算法

获取原文
获取原文并翻译 | 示例

摘要

With the increased density of three-dimensional (3D) processor arrays, faults can potentially occur quite often due to power overheating during massively parallel computing. In order to achieve fault-tolerance under such a scenario, an effective way is to find an as large as possible logical fault-free subarray of from a faulty array of (), such that an original application can still work on the subarray. This paper investigates the problem of constructing maximum fault-free subarrays with minimum interconnection length from 3D arrays with faults. First, we prove that constructing maximum logical array (MLA) is NP-complete. We propose a linear-time algorithm which is capable of producing an MLA for the problem with the constraint of selected indexes. Second, we prove that minimizing the interconnection length (inter-length) of the MLA is NP-hard. We propose an efficient heuristic which significantly reduces the inter-length by revising each logical plane of the MLA. This leads to the reduction of communication cost, capacitance and dynamic power dissipation. In addition, we propose a lower bound for the inter-length of the MLA to evaluate the proposed algorithms. Simulation results show that, the size of logical array can be im
机译:随着三维(3D)处理器阵列密度的增加,由于大规模并行计算过程中的功率过热,很可能会经常发生故障。为了在这种情况下实现容错,一种有效的方法是从()的故障数组中找到尽可能大的逻辑无故障子数组,这样原始应用程序仍然可以在该子数组上工作。本文研究了从有故障的3D阵列构造具有最小互连长度的最大无故障子阵列的问题。首先,我们证明构造最大逻辑数组(MLA)是NP完全的。我们提出了一种线性时间算法,该算法能够针对具有选定索引约束的问题生成MLA。其次,我们证明最小化MLA的互连长度(中间长度)是NP困难的。我们提出了一种有效的启发式方法,该方法可通过修改MLA的每个逻辑平面来显着缩短帧间长度。这导致通信成本,电容和动态功耗的降低。此外,我们提出了MLA长度的下限,以评估提出的算法。仿真结果表明,逻辑数组的大小可以为im

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号