首页> 外文期刊>Computers, IEEE Transactions on >Characterization of Cascading Failures in Interdependent Cyber-Physical Systems
【24h】

Characterization of Cascading Failures in Interdependent Cyber-Physical Systems

机译:相互依赖的网络物理系统中级联故障的表征

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we focus on the cyber-physical system consisting of interdependent physical-resource and computational-resource networks, e.g., smart power grids, automated traffic control system, and wireless sensor and actuator networks, where the physical-resource and computational-resource network are connected and mutually dependent. The failure in physical-resource network might cause failures in computational-resource network, and vice versa. A small failure in either of them could trigger cascade of failures within the entire system. We aim to investigate the issue of cascading failures occur in such system. We propose a typical and practical model by introducing the interdependent complex network. The interdependence between two networks is practically defined as follows: Each node in the computational-resource network has only one support link from the physical-resource network, while each node in physical-resource network is connected to multiple computational nodes. We study the effect of cascading failures using percolation theory and present detailed mathematical analysis of failure propagation in the system. We analyze the robustness of our model caused by random attacks or failures by calculating the size of functioning parts in both networks. Our mathematical analysis proves that there exists a threshold for the proportion of faulty nodes, above which the system collapses. Using extensive simulations, we determine the critical values for different system parameters. Our simulation also shows that, when the proportion of faulty nodes approaching critical value, the size of functioning parts meets a second-order transition. An important observation is that the size of physical-resource and computational-resource networks, and the ratio between their sizes do not affect the system robustness.
机译:在本文中,我们重点研究由物理资源和计算资源相互依赖的网络物理系统,例如智能电网,自动交通控制系统以及无线传感器和执行器网络,其中物理资源和计算资源资源网络相互连接并相互依赖。物理资源网络中的故障可能会导致计算资源网络中的故障,反之亦然。它们中的任何一个发生小故障都可能触发整个系统内的级联故障。我们旨在调查此类系统中发生的级联故障的问题。通过介绍相互依赖的复杂网络,我们提出了一种典型的实用模型。两个网络之间的相互依赖关系实际上定义如下:计算资源网络中的每个节点只有一个来自物理资源网络的支持链接,而物理资源网络中的每个节点都连接到多个计算节点。我们使用渗流理论研究级联故障的影响,并给出系统中故障传播的详细数学分析。我们通过计算两个网络中功能部件的大小来分析由随机攻击或故障引起的模型的鲁棒性。我们的数学分析证明存在故障节点比例的阈值,高于该阈值系统崩溃。通过广泛的仿真,我们确定了不同系统参数的临界值。我们的仿真还表明,当故障节点的比例接近临界值时,功能部件的大小将达到二阶过渡。一个重要的发现是物理资源网络和计算资源网络的大小以及它们之间的比率不会影响系统的健壮性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号