首页> 外文期刊>Computers, IEEE Transactions on >NextCell: Predicting Location Using Social Interplay from Cell Phone Traces
【24h】

NextCell: Predicting Location Using Social Interplay from Cell Phone Traces

机译:NextCell:使用手机跟踪中的社交互动预测位置

获取原文
获取原文并翻译 | 示例

摘要

Location prediction based on cellular network traces has recently spurred lots of attention. However, predicting user mobility remains a very challenging task due to the fuzziness of human mobility patterns. Our preliminary study included in this paper shows that there is a strong correlation between the calling patterns and co-cell patterns of users (i.e., co-occurrence in the same cell tower at the same time). Based on this finding, we propose NextCell—a novel algorithm that aims to enhance the location prediction by harnessing the social interplay revealed in cellular call records. Moreover, our proposal removes the assumption held in previous schemes that binds locations of cell towers to concrete physical coordinates, e.g., GPS coordinates. We validate our approach with the MIT Reality Mining dataset that involves 32,579 symbolic cell tower locations and 350,000 hours of continuous activity information. Experimental results show that NextCell achieves higher precision and recall than the state-of-the-art schemes at cell tower level in the forthcoming one to six hours.
机译:基于蜂窝网络轨迹的位置预测最近引起了很多关注。然而,由于人类移动性模式的模糊性,预测用户移动性仍然是一项非常具有挑战性的任务。我们在本文中进行的初步研究表明,用户的呼叫模式与共同小区模式(即,同时在同一座蜂窝塔中同时出现)之间存在很强的相关性。基于此发现,我们提出了NextCell,这是一种新颖的算法,旨在通过利用手机呼叫记录中显示的社交互动来增强位置预测。此外,我们的提案删除了先前方案中持有的将蜂窝塔位置绑定到具体物理坐标(例如GPS坐标)的假设。我们使用MIT现实采矿数据集验证了我们的方法,该数据集涉及32,579个符号蜂窝塔位置和350,000小时的连续活动信息。实验结果表明,在即将到来的1到6个小时内,NextCell可以在蜂窝塔级实现比最新方案更高的精度和召回率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号