首页> 外文期刊>IEEE Transactions on Computers >Versatile Direct and Transpose Matrix Multiplication with Chained Operations: An Optimized Architecture Using Circulant Matrices
【24h】

Versatile Direct and Transpose Matrix Multiplication with Chained Operations: An Optimized Architecture Using Circulant Matrices

机译:具有链式操作的多功能直接和转置矩阵乘法:使用循环矩阵的优化体系结构

获取原文
获取原文并翻译 | 示例

摘要

With growing demands in real-time control, classification or prediction, algorithms become more complex while low power and small size devices are required. Matrix multiplication (direct or transpose) is common for such computation algorithms. In numerous algorithms, it is also required to perform matrix multiplication repeatedly, where the result of a multiplication is further multiplied again. This work describes a versatile computation procedure and architecture: one of the matrices is stored in internal memory in its circulant form, then, a sequence of direct or transpose multiplications can be performed without timing penalty. The architecture proposes a RAM-ALU block for each matrix column, being connected in a systolic ring. The computation is propagated through internal RAM-ALU blocks. The architecture exploits local connections, minimizing delays. The system is described as an IP core, it is fully parameterisable to customize matrix size and data format when implementing. An N×N matrix multiplication is performed in O(N2) clock cycles requiring N RAM-ALU blocks being 2N in memory size. For a Virtex7 FPGA, clock runs at 340 MHz for 100 × 100 and 290 MHz for 1000 × 1,000 matrix size with 1 clock cycle per element multiplication.
机译:随着对实时控制,分类或预测的需求不断增长,算法变得更加复杂,同时需要低功耗和小型设备。对于这种计算算法,矩阵乘法(直接或转置)是常见的。在许多算法中,还需要重复执行矩阵乘法,其中乘法的结果再次被相乘。这项工作描述了一种通用的计算过程和体系结构:其中一个矩阵以循环形式存储在内部存储器中,然后可以执行一系列直接或转置乘法运算,而不会造成时序损失。该体系结构为每个矩阵列提出了一个RAM-ALU块,并以脉动环连接。计算通过内部RAM-ALU块传播。该架构利用本地连接,最大程度地减少了延迟。该系统被描述为IP核,在实施时可以完全参数化自定义矩阵大小和数据格式。在O(N2)个时钟周期中执行N×N矩阵乘法,需要N个RAM-ALU块的内存大小为2N。对于Virtex7 FPGA,对于100×100的矩阵,时钟运行在340 MHz,对于1000×1,000的矩阵,时钟运行在290 MHz,每个元素乘法的时钟周期为1个时钟周期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号