首页> 外文期刊>IEEE Transactions on Computers >Performance Analysis and Optimization of Distributed Workflows in Heterogeneous Network Environments
【24h】

Performance Analysis and Optimization of Distributed Workflows in Heterogeneous Network Environments

机译:异构网络环境下分布式工作流的性能分析与优化

获取原文
获取原文并翻译 | 示例

摘要

Large-scale e-science features complex DAG-structured workflows comprised of computing modules with intricate inter-module dependencies. Mapping such workflows in heterogeneous network environments and optimizing their end-to-end performance are crucial to the success of scientific collaborations that require fast system response and smooth data flow. We construct analytical cost models and formulate workflow mapping as optimization problems for minimum end-to-end delay and maximum frame rate. The difficulty of these problems essentially arises from the topological matching nature in the spatial domain, which is further compounded by the resource sharing complicacy in the temporal dimension. For unitary processing applications, we develop a workflow mapping algorithm based on a recursive critical path optimization procedure to minimize the latency; while for streaming applications, we conduct a rigorous workflow stability analysis and develop a layer-oriented dynamic programming solution based on topological sorting to identify and minimize the global bottleneck time. The accuracy of the proposed exact delay calculation algorithm is verified in comparison with an approximate solution, a dynamic distributed system simulation program, and a real network deployment, and the performance superiority of the proposed mapping approaches are illustrated by extensive simulation-based comparisons with existing algorithms and verified by large-scale experiments on real-life scientific workflows through effective system implementation and deployment in real networks.
机译:大规模的电子科学具有复杂的DAG结构化工作流,这些工作流由具有复杂模块间依赖性的计算模块组成。在异构网络环境中映射此类工作流程并优化其端到端性能对于要求快速系统响应和平滑数据流的科学协作的成功至关重要。我们构建分析成本模型,并将工作流映射制定为最优化问题,以实现最小的端到端延迟和最大的帧速率。这些问题的困难本质上是由空间域中的拓扑匹配性质引起的,而在时间维度上,资源共享的复杂性进一步加剧了这些问题。对于单一处理应用程序,我们基于递归关键路径优化过程开发了工作流映射算法,以最大程度地减少延迟。对于流应用程序,我们进行了严格的工作流稳定性分析,并基于拓扑排序开发了面向层的动态编程解决方案,以识别并最小化全局瓶颈时间。通过与近似解,动态分布式系统仿真程序和实际网络部署的比较,验证了所提出的精确延迟计算算法的准确性,并且通过与现有的广泛基于仿真的比较来说明所提出的映射方法的性能优势。算法,并通过有效的系统实施和在实际网络中的部署,通过对现实生活中的科学工作流程的大规模实验进行验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号