首页> 外文期刊>IEEE Transactions on Computers >Learning-Based Application-Agnostic 3D NoC Design for Heterogeneous Manycore Systems
【24h】

Learning-Based Application-Agnostic 3D NoC Design for Heterogeneous Manycore Systems

机译:异构Manycore系统的基于学习的与应用程序无关的3D NoC设计

获取原文
获取原文并翻译 | 示例

摘要

The rising use of deep learning and other big-data algorithms has led to an increasing demand for hardware platforms that are computationally powerful, yet energy-efficient. Due to the amount of data parallelism in these algorithms, high-performance three-dimensional (3D) manycore platforms that incorporate both CPUs and GPUs present a promising direction. However, as systems use heterogeneity (e.g., a combination of CPUs, GPUs, and accelerators) to improve performance and efficiency, it becomes more pertinent to address the distinct and likely conflicting communication requirements (e.g., CPU memory access latency or GPU network throughput) that arise from such heterogeneity. Unfortunately, it is difficult to quickly explore the hardware design space and choose appropriate tradeoffs between these heterogeneous requirements. To address these challenges, we propose the design of a 3D Network-on-Chip (NoC) for heterogeneous manycore platforms that considers the appropriate design objectives for a 3D heterogeneous system and explores various tradeoffs using an efficient machine learning (ML)-based multi-objective optimization (MOO) technique. The proposed design space exploration considers the various requirements of its heterogeneous components and generates a set of 3D NoC architectures that efficiently trades off these design objectives. Our findings show that by jointly considering these requirements (latency, throughput, temperature, and energy), we can achieve 9.6 percent better Energy-Delay Product on average at nearly iso-temperature conditions when compared to a thermally-optimized design for 3D heterogeneous NoCs. More importantly, our results suggest that our 3D NoCs optimized for a few applications can be generalized for unknown applications as well. Our results show that these generalized 3D NoCs only incur a 1.8 percent (36-tile system) and 1.1 percent (64-tile system) average performance loss compared to application-specific NoCs.
机译:深度学习和其他大数据算法的使用不断增加,导致对计算功能强大但节能的硬件平台的需求不断增加。由于这些算法中的大量数据并行性,结合了CPU和GPU的高性能三维(3D)多核平台提出了一个有希望的方向。但是,由于系统使用异构性(例如,CPU,GPU和加速器的组合)来提高性能和效率,因此满足不同且可能相互冲突的通信要求(例如,CPU内存访问延迟或GPU网络吞吐量)变得更加相关。这种异质性引起的。不幸的是,很难快速探索硬件设计空间并在这些异构需求之间选择适当的权衡。为了应对这些挑战,我们提出了针对异构多核平台的3D芯片网络(NoC)设计,该平台考虑了3D异构系统的适当设计目标,并使用基于高效机器学习(ML)的多核技术探索了各种折衷方案。目标优化(MOO)技术。拟议的设计空间探索考虑了其异构组件的各种要求,并生成了一组有效权衡这些设计目标的3D NoC架构。我们的发现表明,与3D异构NoC的热优化设计相比,通过共同考虑这些要求(延迟,吞吐量,温度和能量),在接近等温的条件下,我们可以平均获得9.6%的能源延迟产品。更重要的是,我们的结果表明,针对少数应用程序进行了优化的3D NoC也可以推广到未知应用程序。我们的结果表明,与特定于应用程序的NoC相比,这些广义的3D NoC仅导致平均性能损失1.8%(36瓦片系统)和1.1%(64瓦片系统)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号