首页> 外文期刊>Computers & Graphics >A new algorithm for Boolean operations on general polygons
【24h】

A new algorithm for Boolean operations on general polygons

机译:一种对通用多边形进行布尔运算的新算法

获取原文
获取原文并翻译 | 示例

摘要

A new algorithm for Boolean operations on general planar polygons is presented. It is available for general planar polygons (manifold or non-manifold, with or without holes). Edges of the two general polygons are subdivided at the intersection points and touching points. Thus, the boundary of the Boolean operation resultant polygon is made of some whole edges of the polygons after the subdivision process. We use the simplex theory to build the basic mathematical model of the new algorithm. The subordination problem between an edge and a polygon is reduced to a problem of determining whether a point is on some edges of some simplices or inside the simplices, and the associated simplicial chain of the resultant polygon is just an assembly of some simplices and their coefficients of the two polygons after the subdivision process. Examples show that the running time required by the new algorithm is less than one-third of that by the Rivero and Feito algorithm.
机译:提出了一种对一般平面多边形进行布尔运算的新算法。它适用于一般的平面多边形(带或不带孔的流形或非流形)。在交叉点和接触点处细分了两个常规多边形的边。因此,布尔运算结果多边形的边界由细分过程之后的多边形的某些整个边缘组成。我们使用单纯形理论来构建新算法的基本数学模型。边与多边形之间的从属问题被简化为确定点是在某些单纯形的某些边上还是在单纯形内部的问题,并且所得多边形的相关联单纯形链仅仅是某些单纯形及其系数的集合细分过程后的两个多边形中的一个。实例表明,新算法所需的运行时间少于Rivero和Feito算法所需的运行时间的三分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号